ADAPTIVE MESH REFINEMENT IN THE FINITE-ELEMENT COMPUTATION OF MAGNETIC-FIELDS

被引:90
作者
CENDES, ZJ
SHENTON, DN
机构
[1] Carnegie-Mellon Univ, Pittsburgh,, PA, USA, Carnegie-Mellon Univ, Pittsburgh, PA, USA
关键词
MATHEMATICAL TECHNIQUES - Finite Element Method;
D O I
10.1109/TMAG.1985.1063929
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Adaptive mesh refinement has the potential of making the finite-element computation of magnetic field problems completely automatic. In adaptive procedures, the field problem is solved iteratively, beginning with a coarse mesh and refining it in locations of greatest error. Methods of mesh refinement for triangular finite-element grids are surveyed, and the use of local error estimates in the adaptive process is described. It is concluded that the Delaunay triangulation provides the best method of mesh refinement, while complementary variational principles provide accurate error bounds on the solution.
引用
收藏
页码:1811 / 1816
页数:6
相关论文
共 36 条
[1]   COMPLEMENTARY VARIATIONAL PRINCIPLES FOR MAXWELLS EQUATIONS [J].
ANDERSON, N ;
ARTHURS, AM .
INTERNATIONAL JOURNAL OF ELECTRONICS, 1979, 47 (03) :229-236
[2]   VARIATIONAL-PRINCIPLES FOR MAXWELL EQUATIONS .2. [J].
ANDERSON, N ;
ARTHURS, AM .
INTERNATIONAL JOURNAL OF ELECTRONICS, 1981, 51 (01) :71-77
[3]  
ANDERSON N, 1979, INT J ELECTRONICS, V45, P333
[4]  
Arthurs A M, 1980, COMPLEMENTARY VARIAT
[5]  
BABRUSKA I, 1984, JUN INT C ACC EST AD
[6]   AN ADAPTIVE, MULTILEVEL METHOD FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BANK, RE ;
SHERMAN, AH .
COMPUTING, 1981, 26 (02) :91-105
[7]  
BANK RE, UNPUB MATH COMPUTATI
[8]   COMPUTING DIRICHLET TESSELLATIONS [J].
BOWYER, A .
COMPUTER JOURNAL, 1981, 24 (02) :162-166
[9]  
BUBUSKA I, 1978, SIAM J NUMERICAL ANA, V15, P736
[10]  
BUBUSKA I, 1978, INT J NUMERICAL METH, V12, P1579