PCA STABILITY AND CHOICE OF DIMENSIONALITY

被引:46
作者
BESSE, P [1 ]
机构
[1] UNIV TOULOUSE 3, STAT & PROBABIL LAB, CNRS, UA 745, F-31062 TOULOUSE, FRANCE
关键词
PRINCIPAL COMPONENTS ANALYSIS; PERTURBATION THEORY;
D O I
10.1016/0167-7152(92)90115-L
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Criterion of stability for PCA scatterplots is defined based on a classical distance between projectors. It is constructed as a risk function and can be estimated by bootstrap or jackknife methods. Furthermore, perturbation theory is used to write down a Taylor expansion of the jackknife estimate for reasons of computational cost and in order to obtain an analytic expression for the approximation. The comparative study of these three estimates on real data shows that the last one is easy to compute, sufficiently accurate and helpful in choosing dimensionality in PCA.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 13 条
[1]  
Becker RA, 1988, WADSWORTH BROOKSCOLE
[2]   BOOTSTRAP TESTS AND CONFIDENCE-REGIONS FOR FUNCTIONS OF A COVARIANCE-MATRIX [J].
BERAN, R ;
SRIVASTAVA, MS .
ANNALS OF STATISTICS, 1985, 13 (01) :95-115
[3]  
CHATELIN F, 1988, VALEURS PROPRES MATR
[4]  
CRITCHLEY F, 1985, BIOMETRIKA, V72, P627, DOI 10.2307/2336735
[5]  
Daudin J., 1988, J THEORETICAL APPL S, V19, P241
[6]  
DAUDIN JJ, 1989, STATISTICS, V20, P255
[7]   ASYMPTOTIC THEORY FOR THE PRINCIPAL COMPONENT ANALYSIS OF A VECTOR RANDOM FUNCTION - SOME APPLICATIONS TO STATISTICAL-INFERENCE [J].
DAUXOIS, J ;
POUSSE, A ;
ROMAIN, Y .
JOURNAL OF MULTIVARIATE ANALYSIS, 1982, 12 (01) :136-154
[8]  
Efron B., 1982, JACKKNIFE BOOTSTRAP, V38, DOI 10.1137/1.9781611970319
[9]  
GAUSS, 1988, GAUSS SYSTEM VERSION
[10]  
Jolliffe I., 2002, PRINCIPAL COMPONENT