STRINGS IN LESS THAN ONE DIMENSION

被引:970
作者
DOUGLAS, MR
SHENKER, SH
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(90)90522-F
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Starting from the random triangulation definition of two-dimensional euclidean quantum gravity, we define the continuum limit and compute the partition function for closed surfaces of any genus. We discuss the appropriate way to define continuum string perturbation theory in these systems and show that the coefficients (as well as the critical exponents) are universal. The universality classes are just the multicritical points described by Kazakov. We show how the exact non-perturbative string theory is described by a non-linear ordinary differential equation whose properties we study. The behavior of the simplest theory, c = 0 pure gravity, is governed by the Painlevé transcendent of the first kind. © 1990.
引用
收藏
页码:635 / 654
页数:20
相关论文
共 34 条
[1]   DISEASES OF TRIANGULATED RANDOM SURFACE MODELS, AND POSSIBLE CURES [J].
AMBJORN, J ;
DURHUUS, B ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1985, 257 (03) :433-449
[2]   COSMOLOGICAL STRING THEORIES AND DISCRETE INFLATION [J].
ANTONIADIS, I ;
BACHAS, C ;
ELLIS, J ;
NANOPOULOS, DV .
PHYSICS LETTERS B, 1988, 211 (04) :393-399
[3]  
Bender Carl, 1999, ADV MATH METHODS SCI, V1
[4]   A SURVEY OF THE ASYMPTOTIC-BEHAVIOR OF MAPS [J].
BENDER, EA ;
RICHMOND, LB .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 40 (03) :297-329
[5]   NEW METHOD IN THE COMBINATORICS OF THE TOPOLOGICAL EXPANSION [J].
BESSIS, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 69 (02) :147-163
[6]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[7]   THE ISING-MODEL ON A RANDOM PLANAR LATTICE - THE STRUCTURE OF THE PHASE-TRANSITION AND THE EXACT CRITICAL EXPONENTS [J].
BOULATOV, DV ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1987, 186 (3-4) :379-384
[8]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[9]  
BREZIN E, 1989, ENS PREPRINT
[10]   QUANTIZATION OF THE LIOUVILLE MODE AND STRING THEORY [J].
DAS, SR ;
NAIK, S ;
WADIA, SR .
MODERN PHYSICS LETTERS A, 1989, 4 (11) :1033-1041