MULTIDIMENSIONAL BISECTION APPLIED TO GLOBAL OPTIMIZATION

被引:26
作者
WOOD, GR
机构
[1] Department of Mathematics, University of Canterbury Christchurch
关键词
D O I
10.1016/0898-1221(91)90170-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A family of deterministic algorithms is introduced, designed to solve the global optimisation problem for Lipschitz continuous functions of many variables. All the algorithms can be considered as generalisations of the bisection method: they proceed via a sequence of brackets whose infinite intersection is the set of global optima. Brackets are unions of similar simplexes. Acceleration methods, convergence properties and optimality questions are considered.
引用
收藏
页码:161 / 172
页数:12
相关论文
共 7 条
[1]   ITERATIVE METHODS FOR THE LOCALIZATION OF THE GLOBAL MAXIMUM [J].
BASSO, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1982, 19 (04) :781-792
[3]   ON THE CONVERGENCE OF GLOBAL METHODS IN MULTIEXTREMAL OPTIMIZATION [J].
HORST, R ;
TUY, H .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 54 (02) :253-271
[4]   AN ALGORITHM FOR FINDING THE GLOBAL MAXIMUM OF A MULTIMODAL, MULTIVARIATE FUNCTION [J].
MLADINEO, RH .
MATHEMATICAL PROGRAMMING, 1986, 34 (02) :188-200
[5]  
Piyavskii S, 1972, USSR COMP MATH MATH, V12, P57, DOI DOI 10.1016/0041-5553(72)90115-2
[6]   SEQUENTIAL METHOD SEEKING GLOBAL MAXIMUM OF A FUNCTION [J].
SHUBERT, BO .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (03) :379-&
[7]  
WOOD GR, IN PRESS MATH PROGRA