SHORT-TERM AND LONG-TERM SYNAPTIC DEPRESSION IN RAT NEOSTRIATUM

被引:173
作者
LOVINGER, DM
TYLER, EC
MERRITT, A
机构
[1] Molecular Physiol./Biophysics Dept., Vanderbilt University Medical School, Nashville
关键词
D O I
10.1152/jn.1993.70.5.1937
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. We have examined plasticity at glutamatergic synapses on neurons in slices of neostriatum, a forebrain area involved in movement and cognitive function. 2. High-frequency stimulation of afferent inputs to neostriatal neurons induced depression of glutamatergic synaptic transmission. Depression could be induced using either prolonged trains or short repetitive bursts of high-frequency stimulation. Depression developed within seconds after such stimulation. Responses recovered to baseline levels within 10 min in most slices but persisted for up to 60 min in others. 3. Postsynaptic passive electrical properties and the ability to elicit action potentials by postsynaptic depolarization were not altered during depression. 4. The magnitude and time course of depression was similar whether postsynaptic responses were mediated by alpha amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) type glutamate receptors. Depression was not altered by antagonism of AMPA or NMDA receptors or potentiation of AMPA receptor function with aniracetam. 5. Depression was blocked by treatments that increase transmitter release including increased extracellular Ca2+, application of 4-aminopyridine, or application of phorbol ester. 6. Our findings indicate that glutamatergic synapses in neostriatum are capable of expressing a form of synaptic depression that may involve decreased glutamate release.
引用
收藏
页码:1937 / 1949
页数:13
相关论文
共 73 条
[1]   THE FUNCTIONAL-ANATOMY OF BASAL GANGLIA DISORDERS [J].
ALBIN, RL ;
YOUNG, AB ;
PENNEY, JB .
TRENDS IN NEUROSCIENCES, 1989, 12 (10) :366-375
[2]   PARALLEL ORGANIZATION OF FUNCTIONALLY SEGREGATED CIRCUITS LINKING BASAL GANGLIA AND CORTEX [J].
ALEXANDER, GE ;
DELONG, MR ;
STRICK, PL .
ANNUAL REVIEW OF NEUROSCIENCE, 1986, 9 :357-381
[3]  
ARMSTRONGJAMES M, 1986, EXP BRAIN RES, V63, P505
[4]   CALCIUM ACTION IN SYNAPTIC TRANSMITTER RELEASE [J].
AUGUSTINE, GJ ;
CHARLTON, MP ;
SMITH, SJ .
ANNUAL REVIEW OF NEUROSCIENCE, 1987, 10 :633-693
[5]  
BLISS TVP, 1973, J PHYSIOL-LONDON, V23, P334
[6]   HETEROSYNAPTIC CORRELATES OF LONG-TERM POTENTIATION INDUCTION IN HIPPOCAMPAL CA3 NEURONS [J].
BRADLER, JE ;
BARRIONUEVO, G .
NEUROSCIENCE, 1990, 35 (02) :265-271
[7]   COACTIVATION OF D1 AND D2 DOPAMINE-RECEPTORS IS REQUIRED FOR LONG-TERM SYNAPTIC DEPRESSION IN THE STRIATUM [J].
CALABRESI, P ;
MAJ, R ;
MERCURI, NB ;
BERNARDI, G .
NEUROSCIENCE LETTERS, 1992, 142 (01) :95-99
[8]   CHRONIC NEUROLEPTIC TREATMENT - D2 DOPAMINE RECEPTOR SUPERSENSITIVITY AND STRIATAL GLUTAMATERGIC TRANSMISSION [J].
CALABRESI, P ;
DEMURTAS, M ;
MERCURI, NB ;
BERNARDI, G .
ANNALS OF NEUROLOGY, 1992, 31 (04) :366-373
[9]   INTRINSIC MEMBRANE-PROPERTIES OF NEOSTRIATAL NEURONS CAN ACCOUNT FOR THEIR LOW-LEVEL OF SPONTANEOUS ACTIVITY [J].
CALABRESI, P ;
MISGELD, U ;
DODT, HU .
NEUROSCIENCE, 1987, 20 (01) :293-303
[10]  
CALABRESI P, 1992, J NEUROSCI, V12, P4224