A SCALING TEST FOR CORRELATION DIMENSIONS

被引:19
作者
ISLIKER, H
机构
[1] Institut für Astronomie, ETH Zentrum
关键词
D O I
10.1016/0375-9601(92)90234-D
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quantitative test is presented to check scaling and convergence of the correlation integral and consistency of two different algorithms. An application to two known attractors demonstrates that it allows one to judge fast and reliably the quality of a conjectured scaling behaviour above all in the case of short or noisy data. Results concerning minimum data amount and maximum noise level confirm earlier work, the crucial parameter concerning data length turns out, however, to be not the number of points, but the number of cycles in phase space (peaks in the time series).
引用
收藏
页码:313 / 322
页数:10
相关论文
共 20 条
[1]   CALCULATING THE DIMENSION OF ATTRACTORS FROM SMALL DATA SETS [J].
ABRAHAM, NB ;
ALBANO, AM ;
DAS, B ;
DEGUZMAN, G ;
YONG, S ;
GIOGGIA, RS ;
PUCCIONI, GP ;
TREDICCE, JR .
PHYSICS LETTERS A, 1986, 114 (05) :217-221
[2]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[3]   GLOBAL SCALING PROPERTIES OF A CHAOTIC ATTRACTOR RECONSTRUCTED FROM EXPERIMENTAL-DATA [J].
ATMANSPACHER, H ;
SCHEINGRABER, H ;
VOGES, W .
PHYSICAL REVIEW A, 1988, 37 (04) :1314-1322
[4]   INTRINSIC OSCILLATIONS IN MEASURING THE FRACTAL DIMENSION [J].
BADII, R ;
POLITI, A .
PHYSICS LETTERS A, 1984, 104 (6-7) :303-305
[5]   STRANGE ATTRACTORS IN WEAKLY TURBULENT COUETTE-TAYLOR FLOW [J].
BRANDSTATER, A ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1987, 35 (05) :2207-2220
[6]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[8]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[9]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[10]   ATTRACTOR DIMENSION OF NONSTATIONARY DYNAMICAL-SYSTEMS FROM SMALL DATA SETS [J].
HAVSTAD, JW ;
EHLERS, CL .
PHYSICAL REVIEW A, 1989, 39 (02) :845-853