EXISTENCE AND ASYMPTOTIC-BEHAVIOR OF PADE APPROXIMANTS TO THE KORTEWEG-DEVRIES MULTISOLITON SOLUTIONS

被引:8
作者
LIVERANI, C [1 ]
TURCHETTI, G [1 ]
机构
[1] IST NAZL FIS NUCL, BOLOGNA, ITALY
关键词
D O I
10.1063/1.525602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:53 / 64
页数:12
相关论文
共 13 条
[1]   DECAY OF CONTINUOUS SPECTRUM FOR SOLUTIONS OF KORTEWEG-DEVRIES EQUATION [J].
ABLOWITZ, MJ ;
NEWELL, AC .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (09) :1277-1284
[2]  
BAKER G, 1977, ESSENTIALS PADE APPR
[3]  
BREZINSKI C, 1979, INT SERIES NUMERICAL, V50
[4]   METHOD FOR SOLVING KORTEWEG-DEVRIES EQUATION [J].
GARDNER, CS ;
GREENE, JM ;
KRUSKAL, MD ;
MIURA, RM .
PHYSICAL REVIEW LETTERS, 1967, 19 (19) :1095-&
[6]   PADE APPROXIMANTS AND CLOSED FORM SOLUTIONS OF THE KDV AND MKDV EQUATIONS [J].
LAMBERT, F .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1980, 5 (02) :147-150
[7]   SOLITONS AND POLES IN THE NONLINEARITY PARAMETER [J].
LAMBERT, F ;
MUSETTE, M .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1981, 10 (04) :357-362
[8]  
LIVERANI C, 1981, LETT NUOVO CIMENTO, V30, P9
[9]  
ROSALES RR, 1978, STUD APPL MATH, V59, P117
[10]   PADE APPROXIMANTS AND SOLITON-SOLUTIONS OF THE KDV EQUATION [J].
TURCHETTI, G .
LETTERE AL NUOVO CIMENTO, 1980, 27 (04) :107-110