GENERALIZED QUANTILE PROCESSES

被引:57
作者
EINMAHL, JHJ [1 ]
MASON, DM [1 ]
机构
[1] UNIV DELAWARE,DEPT MATH SCI,NEWARK,DE 19716
关键词
EMPIRICAL MEASURE; GENERALIZED QUANTILE PROCESS; CENTRAL LIMIT THEOREM;
D O I
10.1214/aos/1176348670
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For random vectors taking values in R(d) we introduce a notion of multivariate quantiles defined in terms of a class of sets and study an associated process which we call the generalized quantile process. This process specializes to the well known univariate quantile process. We obtain functional central limit theorems for our generalized quantile process and show that both Gaussian and non-Gaussian limiting processes can arise. A number of interesting example are included.
引用
收藏
页码:1062 / 1078
页数:17
相关论文
共 28 条
[1]  
Anderson T.W., 1955, P AM MATH SOC, V6, P170, DOI [10.2307/2032333, DOI 10.2307/2032333]
[2]  
[Anonymous], 1989, APPROXIMATE DISTRIBU, DOI DOI 10.1007/978-1-4613-9620-8
[3]   ORDERING OF MULTIVARIATE DATA [J].
BARNETT, V .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1976, 139 :318-354
[4]   WEAK CONVERGENCE OF AN EMPIRICAL PROCESS INDEXED BY CLOSED CONVEX SUBSETS OF I2 [J].
BOLTHAUSEN, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1978, 43 (02) :173-181
[5]   STRONG APPROXIMATIONS OF QUANTILE PROCESS [J].
CSORGO, M ;
REVESZ, P .
ANNALS OF STATISTICS, 1978, 6 (04) :882-894
[6]  
CSORGO M, 1983, REGIONAL C SERIES AP, V42
[7]  
Csorgo M., 1981, STRONG APPROXIMATION
[9]   THE ALMOST SURE BEHAVIOR OF MAXIMAL AND MINIMAL MULTIVARIATE KN-SPACINGS [J].
DEHEUVELS, P ;
EINMAHL, JHJ ;
MASON, DM ;
RUYMGAART, FH .
JOURNAL OF MULTIVARIATE ANALYSIS, 1988, 24 (01) :155-176
[10]   CENTRAL LIMIT-THEOREMS FOR EMPIRICAL MEASURES [J].
DUDLEY, RM .
ANNALS OF PROBABILITY, 1978, 6 (06) :899-929