MINIMUM DISSECTION OF A RECTILINEAR POLYGON WITH ARBITRARY HOLES INTO RECTANGLES

被引:25
作者
SOLTAN, V
GORPINEVICH, A
机构
[1] Institute of Mathematics, Moldavian Academy of Sciences, Kishinev, 277028
关键词
D O I
10.1007/BF02189307
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, the problem of dissecting a plane rectilinear polygon with arbitrary (possibly, degenerate) holes into a minimum number of rectangles is shown to be solvable in O(n3/2 log n) time. This fact disproves a famous assertion about the NP-hardness of the minimum rectangular dissection problem for rectilinear polygons with point holes.
引用
收藏
页码:57 / 79
页数:23
相关论文
共 11 条
[1]   MINIMAL RECTANGULAR PARTITIONS OF DIGITIZED BLOBS [J].
FERRARI, L ;
SANKAR, PV ;
SKLANSKY, J .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 28 (01) :58-71
[2]  
GORPINEVICH AN, 1908, B ACAD SCI MOLD PTMS, P19
[3]   EFFICIENT ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS [J].
IMAI, H ;
ASANO, T .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :478-494
[4]  
KORNIENKO NM, 1978, IZV AKAD NAUK BS PMS, P25
[5]  
LINGAS A, 1982, LECT NOTES COMPUT SC, V140, P369
[6]   AN O(N LOG N) MANHATTAN PATH ALGORITHM [J].
LIPSKI, W .
INFORMATION PROCESSING LETTERS, 1984, 19 (02) :99-102
[7]   FINDING A MANHATTAN PATH AND RELATED PROBLEMS [J].
LIPSKI, W .
NETWORKS, 1983, 13 (03) :399-409
[8]  
LIPSKI W, 1979, FUND INFORM, V2, P245
[9]  
RUBTSOV VP, 1976, ELECTRONNAYA TEHNICA, V3, P54
[10]  
SOLTAN V, 1985, REPUBLICAN SEMINAR D, P107