KADANOFFS APPROXIMATE RENORMALIZATION GROUP TRANSFORMATION

被引:22
作者
KNOPS, HJF [1 ]
机构
[1] CATHOLIC UNIV NIJMEGEN,INST THEORET FYS,NIJMEGEN,NETHERLANDS
来源
PHYSICA A | 1977年 / 86卷 / 02期
关键词
D O I
10.1016/0378-4371(77)90040-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:448 / 456
页数:9
相关论文
共 14 条
[1]   FINITE-LATTICE APPROXIMATIONS TO RENORMALIZATION GROUPS [J].
BELL, TL ;
WILSON, KG .
PHYSICAL REVIEW B, 1975, 11 (09) :3431-3444
[2]  
BURKHARDT TW, PREPRINT JULICH
[3]  
HEMMER PC, 1975, PREPRINT TRONDHEIM
[4]   IMPROVED CUMULANT EXPANSION FOR A RENORMALIZATION-GROUP TREATMENT OF ISING MODELS [J].
HSU, SC ;
NIEMEIJER, T ;
GUNTON, JD .
PHYSICAL REVIEW B, 1975, 11 (07) :2699-2701
[5]   NUMERICAL EVALUATIONS OF CRITICAL PROPERTIES OF TWO-DIMENSIONAL ISING-MODEL [J].
KADANOFF, LP ;
HOUGHTON, A .
PHYSICAL REVIEW B, 1975, 11 (01) :377-386
[6]   VARIATIONAL PRINCIPLES AND APPROXIMATE RENORMALIZATION GROUP CALCULATIONS [J].
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1975, 34 (16) :1005-1008
[7]  
KADANOFF LP, PREPRINT
[8]  
KADANOFF LP, 1975, IUPAP C BUDAPEST
[9]   RENORMALIZATION-GROUP APPROACH TO SOLUTION OF GENERAL ISING MODELS [J].
NAUENBERG, M ;
NIENHUIS, B .
PHYSICAL REVIEW LETTERS, 1974, 33 (27) :1598-1601
[10]   WILSON THEORY FOR 2-DIMENSIONAL ISING SPIN SYSTEMS [J].
NIEMEYER, T ;
VANLEEUW.JM .
PHYSICA, 1974, 71 (01) :17-40