TENSOR PRODUCT GENERALIZED ADI METHODS FOR SEPARABLE ELLIPTIC PROBLEMS

被引:30
作者
DYKSEN, WR
机构
[1] Purdue Univ, West Lafayette, IN, USA, Purdue Univ, West Lafayette, IN, USA
关键词
D O I
10.1137/0724006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider solving separable, second order, linear elliptic partial differential equations. If an elliptic problem is separable, then, for certain discretizations, the matrices involved in the corresponding discrete problem can be expressed in terms of tensor products of lower order matrices. We present a new Tensor Product Generalized Alternating Direction Implicit (TPGADI) iterative method for solving such discrete problems. We prove convergence and establish computational efficiency. The TPGADI method is applied to the Hermite bicubic collocation equations. We conclude that the TPGADI method is an effective tool for solving the discrete elliptic problems arising from a large class of elliptic problems.
引用
收藏
页码:59 / 76
页数:18
相关论文
共 28 条
[1]  
BANK R, 1978, ACM T MATH SOFTWARE, V4, P165
[2]  
BIRKHOFF G, 1962, ADV COMPUT, P189
[3]  
BIRKHOFF G, 1985, NUMERICAL SOLUTION E
[4]  
De Boor C., 1979, ACM Transactions on Mathematical Software, V5, P173, DOI 10.1145/355826.355831
[5]  
DEBOOR C, 1980, MATH COMPUT, V35, P679, DOI 10.1090/S0025-5718-1980-0572849-1
[6]  
DEBOOR C, 1981, MATH COMPUT, V36, P1, DOI 10.1090/S0025-5718-1981-0595038-4
[7]  
Dongarra JJ, 1979, LINPACK USERS GUIDE
[8]  
Douglas J., 1956, T AM MATH SOC, V82, P421, DOI DOI 10.1090/S0002-9947-1956-0084194-4
[9]   THE PERFORMANCE OF THE COLLOCATION AND GALERKIN METHODS WITH HERMITE BI-CUBICS [J].
DYKSEN, WR ;
HOUSTIS, EN ;
LYNCH, RE ;
RICE, JR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (04) :695-715
[10]  
DYKSEN WR, IN PRESS J COMP APPL