A CURVILINEAR SPECTRAL OVERLAY METHOD FOR HIGH-GRADIENT PROBLEMS

被引:11
作者
BELYTSCHKO, T [1 ]
LU, YY [1 ]
机构
[1] NORTHWESTERN UNIV,ROBERT R MCCORMICK SCH ENGN & APPL SCI,DEPT CIVIL ENGN,EVANSTON,IL 60208
基金
美国国家科学基金会;
关键词
D O I
10.1016/0045-7825(92)90194-O
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The spectral overlay method is extended to domains with curvilinear boundaries. In the spectral overlay method, high resolution of localized steep gradients is achieved by overlaying a spectral interpolant on a standard finite element mesh. A special integration scheme is developed which enables the method to satisfy the patch test for a curvilinear overlay. Results are compared to closed form solutions with high gradients and the method is shown to be very powerful in capturing the shape of the gradient field and its peak value.
引用
收藏
页码:383 / 396
页数:14
相关论文
共 9 条
[1]   THE SPECTRAL OVERLAY ON FINITE-ELEMENTS FOR PROBLEMS WITH HIGH GRADIENTS [J].
BELYTSCHKO, T ;
FISH, J ;
BAYLISS, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 81 (01) :71-89
[2]  
Fox L., 1968, CHEBYSHEV POLYNOMIAL, V2nd
[4]  
Schwarz H. R., 1989, NUMERICAL ANAL COMPR
[5]  
Snyder MA., 1966, CHEBYSHEV METHODS NU
[6]  
Strang Gilbert, 1973, ANAL FINITE ELEMENT, V212, DOI 10.2307/2005716
[7]  
Stroud A. H., 1966, GAUSSIAN QUADRATURE
[8]   THE PATCH TEST - A CONDITION FOR ASSESSING FEM CONVERGENCE [J].
TAYLOR, RL ;
SIMO, JC ;
ZIENKIEWICZ, OC ;
CHAN, ACH .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 22 (01) :39-62
[9]   NON-CONFORMING ELEMENT FOR STRESS ANALYSIS [J].
TAYLOR, RL ;
BERESFORD, PJ ;
WILSON, EL .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1976, 10 (06) :1211-1219