COMPARISON OF THE SCALE INVARIANT SOLUTIONS OF THE KURAMOTO-SIVASHINSKY AND KARDAR-PARISI-ZHANG EQUATIONS IN D-DIMENSIONS

被引:34
作者
LVOV, VS
PROCACCIA, I
机构
[1] WEIZMANN INST SCI,DEPT CHEM PHYS,IL-76100 REHOVOT,ISRAEL
[2] ACAD SCI RUSSIA,INST AUTOMAT & ELECTROMETRY,NOVOSIBIRSK 630090,USSR
关键词
D O I
10.1103/PhysRevLett.69.3543
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that the scale invariant solutions of the KS and KPZ models of surface roughening are identical for dimensions d < 2, but may differ for dimensions d greater-than-or-equal-to 2 in the strong coupling limit. For d greater-than-or-equal-to 2, these models posses two different scaling solutions, one with d-independent scaling exponents y = z = 2, and the other with d-dependent nontrivial exponents The first of these solutions is realizable in one of these models, but not the other. These conclusions are valid to all orders in renormalized perturbation theory.
引用
收藏
页码:3543 / 3546
页数:4
相关论文
共 11 条
[1]   NUMERICAL-SOLUTION OF A CONTINUUM EQUATION FOR INTERFACE GROWTH IN 2+1 DIMENSIONS [J].
AMAR, JG ;
FAMILY, F .
PHYSICAL REVIEW A, 1990, 41 (06) :3399-3402
[2]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[3]   GROWTH IN A RESTRICTED SOLID-ON-SOLID MODEL [J].
KIM, JM ;
KOSTERLITZ, JM .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2289-2292
[4]  
KURAMOTO Y, 1978, PROG THEOR PHYS S, V64, P346
[5]  
LVOV VS, IN PRESS
[6]  
MEDINA E, 1989, PHYS REV A, V39, P143
[7]  
PROCACCIA I, IN PRESS ANN PHYS NY
[8]   SELF-AFFINE FRACTAL INTERFACES FROM IMMISCIBLE DISPLACEMENT IN POROUS-MEDIA [J].
RUBIO, MA ;
EDWARDS, CA ;
DOUGHERTY, A ;
GOLLUB, JP .
PHYSICAL REVIEW LETTERS, 1989, 63 (16) :1685-1688
[9]   NON-LINEAR ANALYSIS OF HYDRODYNAMIC INSTABILITY IN LAMINAR FLAMES .1. DERIVATION OF BASIC EQUATIONS [J].
SIVASHINSKY, GI .
ACTA ASTRONAUTICA, 1977, 4 (11-1) :1177-1206
[10]  
VISCEK T, 1990, PHYSICA A, V167, P315