CLASSIFICATION OF STRANGE ATTRACTORS BY INTEGERS

被引:136
作者
MINDLIN, GB [1 ]
HOU, XJ [1 ]
SOLARI, HG [1 ]
GILMORE, R [1 ]
TUFILLARO, NB [1 ]
机构
[1] BRYN MAWR COLL,DEPT PHYS,BRYN MAWR,PA 19010
关键词
D O I
10.1103/PhysRevLett.64.2350
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to characterize a strange attractor by a set of integers. These are extracted from the chaotic time-series data by first reconstructing the low-period orbits and then determining the template, or knot holder, which supports all periodic orbits embedded in the strange attractor, and the strange attractor itself. The template is identified by a set of integers which therefore characterize the strange attractor. This identification is explicitly demonstrated for the Pirogon using a relatively small data set (5000 points). © 1990 The American Physical Society.
引用
收藏
页码:2350 / 2353
页数:4
相关论文
共 25 条
[1]   SCALING STRUCTURE OF STRANGE ATTRACTORS [J].
AUERBACH, D ;
OSHAUGHNESSY, B ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 37 (06) :2234-2236
[2]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[3]   TOPOLOGICAL AND METRIC PROPERTIES OF HENON-TYPE STRANGE ATTRACTORS [J].
CVITANOVIC, P ;
GUNARATNE, GH ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1988, 38 (03) :1503-1520
[4]   SHIFT AUTOMORPHISMS IN THE HENON MAPPING [J].
DEVANEY, R ;
NITECKI, Z .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 67 (02) :137-146
[5]  
ECKMANN JP, 1986, PHYS REV A, V34, P497
[6]  
GILMORE R, UNPUB
[7]   CHAOS IN A NON-LINEAR DRIVEN OSCILLATOR WITH EXACT SOLUTION [J].
GONZALEZ, DL ;
PIRO, O .
PHYSICAL REVIEW LETTERS, 1983, 50 (12) :870-872
[8]   SYMMETRIC KICKED SELF-OSCILLATORS - ITERATED MAPS, STRANGE ATTRACTORS, AND SYMMETRY OF THE PHASE-LOCKING FAREY HIERARCHY [J].
GONZALEZ, DL ;
PIRO, O .
PHYSICAL REVIEW LETTERS, 1985, 55 (01) :17-20
[9]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593
[10]   UNSTABLE PERIODIC-ORBITS AND THE DIMENSION OF CHAOTIC ATTRACTORS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICAL REVIEW A, 1987, 36 (07) :3522-3524