MOLECULAR-DYNAMICS ALGORITHM FOR FLEXIBLE MOLECULES USING NORMAL COORDINATES

被引:5
作者
BUCHNER, M
LADANYI, BM
机构
[1] Department of Chemistry, Colorado State University, CO, 80523, Fort Collins
关键词
D O I
10.1080/00268979100101821
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new algorithm for the treatment of flexible molecules in molecular dynamics simulation is presented. The equations of motion are formulated in terms of centre-of-mass position, quaternions, normal coordinates, and the corresponding momenta. Advantage is taken of the nearly harmonic motion of the normal coordinates by employing special purpose methods devised for the integration of trigonometric functions. Compared to simulations using Cartesian coordinates, much larger time steps can be used without affecting energy conservation. The algorithm is applied to liquids of diatomic molecules resembling nitrogen and to a model for liquid carbon tetrachloride. A time step acceptable for most applications turns out to be nearly independent of the internal frequencies involved, and is of the same size as is appropriate for the rigid molecule case.
引用
收藏
页码:1127 / 1143
页数:17
相关论文
共 18 条
[1]  
Allen M.P., 1987, COMPUTER SIMULATION
[2]   A MOLECULAR-DYNAMICS SIMULATION STUDY OF OCTOPOLES IN THE FIELD OF A PLANAR SURFACE [J].
ALLEN, MP .
MOLECULAR PHYSICS, 1984, 52 (03) :717-732
[3]  
[Anonymous], 1955, MOL VIBRATIONS
[4]   DYNAMIC FRICTION ON RIGID AND FLEXIBLE BONDS [J].
BERNE, BJ ;
TUCKERMAN, ME ;
STRAUB, JE ;
BUG, ALR .
JOURNAL OF CHEMICAL PHYSICS, 1990, 93 (07) :5084-5095
[5]   REPRESENTATION OF ORIENTATION SPACE [J].
EVANS, DJ .
MOLECULAR PHYSICS, 1977, 34 (02) :317-325
[6]  
Gautschi W., 1961, NUMER MATH, V3, P381, DOI DOI 10.1007/BF01386037
[7]  
Herzberg G., 1945, INFRARED RAMAN SPECT, VII
[8]  
LLORENTE JMG, 1990, J CHEM PHYS, V92, P2762, DOI 10.1063/1.457922
[9]  
MCDONALD IR, 1982, MOL PHYS, V45, P522
[10]   MOLECULAR-DYNAMICS SIMULATION OF DEPHASING IN LIQUID-NITROGEN [J].
OXTOBY, DW ;
LEVESQUE, D ;
WEIS, JJ .
JOURNAL OF CHEMICAL PHYSICS, 1978, 68 (12) :5528-5533