SUBUNIT REARRANGEMENT OF THE CYCLIN-DEPENDENT KINASES IS ASSOCIATED WITH CELLULAR-TRANSFORMATION

被引:558
作者
XIONG, Y [1 ]
ZHANG, H [1 ]
BEACH, D [1 ]
机构
[1] COLD SPRING HARBOR LAB, HOWARD HUGHES MED INST, COLD SPRING HARBOR, NY 11724 USA
关键词
CYCLIN; CYCLIN-DEPENDENT KINASE (CDK); CELL CYCLE; CELLULAR TRANSFORMATION; P53; PCNA;
D O I
10.1101/gad.7.8.1572
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In normal human diploid fibroblasts, cyclins of the A, B, and D classes each associate with cyclin-dependent kinases (CDKs), proliferating cell nuclear antigen (PCNA), and p21, thereby forming multiple independent quaternary complexes. Upon transformation of diploid fibroblasts with the DNA tumor virus SV40, or its transforming tumor antigen (T), the cyclin D/p21/CDK/PCNA complexes are disrupted. In transformed cells, CDK4 totally dissociates from cyclin D, PCNA, and p21 and, instead, associates exclusively with a polypeptide of 16 kD (p16). Quaternary complexes containing cyclins A or B1 and p21/CDK/PCNA also undergo subunit rearrangement in transformed cells. Both PCNA and p21 are no longer associated with CDC2-cyclin B1 binary complexes. Cyclin A complexes no longer contain p21, and a new 19-kD polypeptide (p19) is found in association with cyclin A. The pattern of subunit rearrangement of cyclin-CDK complexes in SV40-transformed cells is also shared in those containing adeno- or papilloma viral oncoproteins. Rearrangement also occurs in p53-deficient cells derived from Li-Fraumeni patients that carry no known DNA tumor virus. These findings suggest a mechanism by which oncogenic proteins alter the cell cycle of transformed cells.
引用
收藏
页码:1572 / 1583
页数:12
相关论文
共 73 条
[1]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[2]  
BISCHOFF FZ, 1990, CANCER RES, V50, P7979
[3]   INVOLVEMENT OF CDC13+ IN MITOTIC CONTROL IN SCHIZOSACCHAROMYCES-POMBE - POSSIBLE INTERACTION OF THE GENE-PRODUCT WITH MICROTUBULES [J].
BOOHER, R ;
BEACH, D .
EMBO JOURNAL, 1988, 7 (08) :2321-2327
[4]   P13SUC1 ACTS IN THE FISSION YEAST-CELL DIVISION CYCLE AS A COMPONENT OF THE P34CDC2 PROTEIN-KINASE [J].
BRIZUELA, L ;
DRAETTA, G ;
BEACH, D .
EMBO JOURNAL, 1987, 6 (11) :3507-3514
[5]   THE RETINOBLASTOMA PROTEIN IS PHOSPHORYLATED DURING SPECIFIC PHASES OF THE CELL-CYCLE [J].
BUCHKOVICH, K ;
DUFFY, LA ;
HARLOW, E .
CELL, 1989, 58 (06) :1097-1105
[6]   A FISSION YEAST B-TYPE CYCLIN FUNCTIONING EARLY IN THE CELL-CYCLE [J].
BUENO, A ;
RICHARDSON, H ;
REED, SI ;
RUSSELL, P .
CELL, 1991, 66 (01) :149-159
[7]   INDEPENDENT BINDING OF THE RETINOBLASTOMA PROTEIN AND P107 TO THE TRANSCRIPTION FACTOR E2F [J].
CAO, L ;
FAHA, B ;
DEMBSKI, M ;
TSAI, LH ;
HARLOW, E ;
DYSON, N .
NATURE, 1992, 355 (6356) :176-179
[8]  
CLEVELAND DW, 1977, J BIOL CHEM, V252, P1102
[9]   THE PRODUCT OF THE RETINOBLASTOMA SUSCEPTIBILITY GENE HAS PROPERTIES OF A CELL-CYCLE REGULATORY ELEMENT [J].
DECAPRIO, JA ;
LUDLOW, JW ;
LYNCH, D ;
FURUKAWA, Y ;
GRIFFIN, J ;
PIWNICAWORMS, H ;
HUANG, CM ;
LIVINGSTON, DM .
CELL, 1989, 58 (06) :1085-1095
[10]   A CYCLIN-A-PROTEIN KINASE COMPLEX POSSESSES SEQUENCE-SPECIFIC DNA-BINDING ACTIVITY - P33CDK2 IS A COMPONENT OF THE E2F-CYCLIN-A COMPLEX [J].
DEVOTO, SH ;
MUDRYJ, M ;
PINES, J ;
HUNTER, T ;
NEVINS, JR .
CELL, 1992, 68 (01) :167-176