Unstable evolution of pointwise trajectory solutions to chaotic maps

被引:7
作者
Fox, RF
机构
[1] School of Physics, Georgia Institute of Technology, Atlanta
关键词
D O I
10.1063/1.166132
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple chaotic maps are used to illustrate the inherent instability of trajectory solutions to the Frobenius-Perron equation. This is demonstrated by the difference in the behavior of delta-function solutions and of extended densities. Extended densities evolve asymptotically and irreversibly into invariant measures on stationary attractors. Pointwise trajectories chaotically roam over these attractors forever. Periodic Gaussian distributions on the unit interval are used to provide insight. Viewing evolving densities as ensembles of unstable pointwise trajectories gives densities a stochastic interpretation. (C) 1995 American Institute of Physics.
引用
收藏
页码:619 / 633
页数:15
相关论文
共 44 条
[1]  
[Anonymous], 1994, CHAOS FRACTALS NOISE
[2]  
[Anonymous], 1993, CAMBRIDGE NONLINEAR, DOI DOI 10.1017/CBO9780511524585
[3]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[4]  
BAKER GL, 1990, CHAOTIC DYNAMICS
[5]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[6]  
Berry M. V., 1978, AIP C P, V46, P16, DOI DOI 10.1063/1.31417
[7]   EVOLUTION AND EXACT EIGENSTATES OF A RESONANT QUANTUM SYSTEM [J].
CHANG, SJ ;
SHI, KJ .
PHYSICAL REVIEW A, 1986, 34 (01) :7-22
[8]   PERIODIC ORBIT EXPANSIONS FOR CLASSICAL SMOOTH FLOWS [J].
CVITANOVIC, P ;
ECKHARDT, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (05) :L237-L241
[9]  
CVITANOVIC P, 1990, NOISE CHAOS NONLINEA, P270
[10]   EXPERIMENTAL CONTROL OF CHAOS [J].
DITTO, WL ;
RAUSEO, SN ;
SPANO, ML .
PHYSICAL REVIEW LETTERS, 1990, 65 (26) :3211-3214