Robust and quadratic stability via polytopic set covering

被引:19
作者
Amato, F
Garofalo, F
Glielmo, L
Pironti, A
机构
[1] Dipartimento di Informatica e Sistemistica, Università degli Studi di Napoli Federico II, Napoli, 80125
关键词
linear systems; robust stability analysis; quadratic stability analysis; convex and concave mappings;
D O I
10.1002/rnc.4590050806
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the problem of covering the image of a given function by a polytope. This problem arises in both the robust and quadratic stability context. We present two main algorithms: the first one performs such a covering and works under quite general assumptions on the nature of the function; the second one is iterative and allows us to improve at will the goodness of the covering. The convergence properties of this algorithm are also discussed. Finally two examples of application of our techniques are presented.
引用
收藏
页码:745 / 756
页数:12
相关论文
共 16 条
[1]  
AMATO F, UNPUB PARAMETER DEPE
[2]  
AMATO F, 1993, 12TH P IFAC WORLD C, V6, P423
[3]  
ANAGNOST JJ, 1990, 29TH P IEEE C DEC CO, P509
[4]  
BARMISH BR, 1990, 29TH P IEEE C DEC CO, P1
[5]  
BARTLETT AC, 1988, MATH CONTROL SIGNAL, V1, P67
[6]  
CORLESS M, 1988, INT WORKSHOP ROBUSTN
[7]   EXACT CALCULATION OF THE MULTILOOP STABILITY MARGIN [J].
DEGASTON, RRE ;
SAFONOV, MG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (02) :156-171
[8]   STABILITY ROBUSTNESS OF INTERVAL MATRICES VIA LYAPUNOV QUADRATIC-FORMS [J].
GAROFALO, F ;
CELENTANO, G ;
GLIELMO, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) :281-284
[9]   REGULATORS FOR LINEAR, TIME INVARIANT PLANTS WITH UNCERTAIN PARAMETERS [J].
HORISBERGER, HP ;
BELANGER, PR .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (05) :705-708
[10]  
Kharitonov VL, 1978, DIFFERENTIALNYE URAV, V14, P2088