MECHANISM OF EXTRACTION OF CHYMOTRYPSIN INTO ISOOCTANE AT VERY-LOW CONCENTRATIONS OF AEROSOL OT IN THE ABSENCE OF REVERSED MICELLES

被引:120
作者
PARADKAR, VM
DORDICK, JS
机构
[1] UNIV IOWA,DEPT CHEM & BIOCHEM ENGN,IOWA CITY,IA 52242
[2] UNIV IOWA,CTR BIOCATALYSIS & BIOPROC,IOWA CITY,IA 52242
关键词
CHYMOTRYPSIN; AEROSOL OT; EXTRACTION; SOLUBILIZATION; ORGANIC SOLVENTS; PROTEIN EXTRACTION;
D O I
10.1002/bit.260430614
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Chymotrypsin is easily extracted from an aqueous solution into isooctane containing the anionic surfactant aerosol OT (AOT). The concentration of AOT needed to efficiently extract 0.5 mg/mL CMT is as low as 1 mM and as low as 0.2 mM AOT was sufficient to extract the protein into isooctane. The extraction process was unaffected by 10% (v/v) ethyl acetate in the isooctane phase. Moreover, spectroscopic analysis by electron paramagnetic resonance indicated that CMT did not exist inside a discreet water pool of a reversed micelle. Calculations of the number of AOT molecules associated per extracted CMT molecule indicate that only ca. 30 surfactant molecules interact with the protein, a value too low for reversed micellar incorporation of the protein in isooctane. These studies suggested that reversed micelles do not need to be involved in the actual transfer of the protein from the aqueous to the organic phase and protein solubilization in the organic phase is possible in the absence of reversed micelles. Based on these findings, a new mechanism has been proposed herein for protein extraction via the phase transfer method involving ionic surfactants. The central theme of this mechanism is the formation of an electrostatic complex between CMT and AOT at the aqueous/organic interface between AOT and CMT, thereby leading to the formation of a hydrophobic species that partitions into the organic phase. Consistent with this mechanism, the efficiency of extraction is dependent on the interfacial mass transfer, the concentrations of CMT and AOT in the aqueous and organic phases, respectively; the ionic strength of the aqueous phase; and the presence of various cosolvents. (C) 1994 John Wiley and Sons, Inc.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 44 条
[1]   SOLUBILIZATION MECHANISM OF CYTOCHROME-C IN SODIUM BIS(2-ETHYLHEXYL) SULFOSUCCINATE WATER OIL MICROEMULSION [J].
ADACHI, M ;
HARADA, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1993, 97 (14) :3631-3640
[2]   SOLVENT DIELECTRIC EFFECTS ON PROTEIN DYNAMICS [J].
AFFLECK, R ;
HAYNES, CA ;
CLARK, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (11) :5167-5170
[3]   ENZYMATIC CATALYSIS AND DYNAMICS IN LOW-WATER ENVIRONMENTS [J].
AFFLECK, R ;
XU, ZF ;
SUZAWA, V ;
FOCHT, K ;
CLARK, DS ;
DORDICK, JS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (03) :1100-1104
[4]   SELECTIVE SEPARATION AND PURIFICATION OF 2 LIPASES FROM CHROMOBACTERIUM-VISCOSUM USING AOT REVERSED MICELLES [J].
AIRESBARROS, MR ;
CABRAL, JMS .
BIOTECHNOLOGY AND BIOENGINEERING, 1991, 38 (11) :1302-1307
[5]   INTERFACIAL-TENSION MINIMA IN OIL-WATER SURFACTANT SYSTEMS - EFFECTS OF ALKANE CHAIN-LENGTH AND PRESENCE OF NORMAL-ALKANOLS IN SYSTEMS CONTAINING AEROSOL OT [J].
AVEYARD, R ;
BINKS, BP ;
MEAD, J .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS I, 1986, 82 :1755-1770
[6]  
BERLINER LJ, 1974, PROG BIOORG CHEM, V3, P1
[7]   ISOELECTRIC-FOCUSING STUDIES OF CONCANAVALIN-A AND THE LENTIL LECTIN [J].
BHATTACHARYYA, L ;
BREWER, CF .
JOURNAL OF CHROMATOGRAPHY, 1990, 502 (01) :131-142
[8]   ARRANGEMENT OF ALPHA-CHYMOTRYPSIN MOLECULES IN MONOCLINIC CRYSTAL FORM [J].
BLOW, DM ;
ROSSMANN, MG ;
JEFFERY, BA .
JOURNAL OF MOLECULAR BIOLOGY, 1964, 8 (01) :65-&
[9]   ELECTROSTATIC MODEL FOR PROTEIN REVERSE MICELLE COMPLEXATION [J].
BRATKO, D ;
LUZAR, A ;
CHEN, SH .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (01) :545-550
[10]   CYTOCHROME-C IN SODIUM BIS(2-ETHYLHEXYL) SULFOSUCCINATE REVERSE MICELLES - STRUCTURE AND REACTIVITY [J].
BROCHETTE, P ;
PETIT, C ;
PILENI, MP .
JOURNAL OF PHYSICAL CHEMISTRY, 1988, 92 (12) :3505-3511