APPROXIMATIONS AND METRIC REGULARITY IN MATHEMATICAL-PROGRAMMING IN BANACH-SPACE

被引:54
作者
JOURANI, A [1 ]
THIBAULT, L [1 ]
机构
[1] UNIV PAU,MATH APPL LAB,CNRS,URA 1204,F-64000 PAU,FRANCE
关键词
APPROXIMATIONS; SUBDIFFERENTIAL; METRIC REGULARITY; LAGRANGE-KUHN-TUCKER MULTIPLIERS;
D O I
10.1287/moor.18.2.390
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper establishes verifiable conditions ensuring the important notion of metric regularity for general nondifferentiable programming problems in Banach spaces. These conditions are used to obtain Lagrange-Kuhn-Tucker multipliers for minimization problems with infinitely many inequality and equality constraints.
引用
收藏
页码:390 / 401
页数:12
相关论文
共 33 条
[1]  
Aubin J.-P., 2009, SET-VALUED ANAL, DOI 10.1007/978-0-8176-4848-0
[2]  
AUBIN JP, 1984, APPLIED NONLINEAR AN
[3]   STABILITY IN MATHEMATICAL-PROGRAMMING WITH NONDIFFERENTIABLE DATA [J].
AUSLENDER, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (02) :239-254
[4]   STABILITY AND REGULAR POINTS OF INEQUALITY SYSTEMS [J].
BORWEIN, JM .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 48 (01) :9-52
[6]   CALMNESS AND EXACT PENALIZATION [J].
BURKE, JV .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (02) :493-497
[7]  
Clarke F., 1987, OPTIMIZATION NONSMOO
[8]   METRIC REGULARITY, TANGENT SETS, AND 2ND-ORDER OPTIMALITY CONDITIONS [J].
COMINETTI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (03) :265-287
[9]  
DIEN PH, 1981, ACT MATH VIETNAM, V6, P2
[10]  
DMITRUK AV, 1980, USP MAT NAUK, V35, P11