DIMENSIONALITY OF THE COHERENCY MATRIX IN POLARIZATION OPTICS

被引:17
作者
BROSSEAU, C
BARAKAT, R
机构
[1] HARVARD UNIV,DIV APPL SCI,CAMBRIDGE,MA 02138
[2] RGB ASSOCIATES,WAYLAND,MA 02138
关键词
D O I
10.1016/0030-4018(92)90368-2
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate a generalization of the Wiener-Wolf coherency matrix formalism used for analysis of polarization phenomena. This generalization is served through the use of the spectral decomposition theorem. This new coherency matrix defined as the covariance matrix of the Stokes parameters permits both to describe the effect of any linear scattering medium (depolarizing or not) on the state of polarization and to analyze the coherence properties of fourth order in optical fields. An explicit development is given for the case of gaussian distributed light. We also illustrate this approach by determining the characteristics of a linear modifying polarization interaction (i.e. transmittance, degree of polarization and entropy) in terms of this coherency matrix.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 33 条
[1]  
[Anonymous], 2012, DENSITY MATRIX THEOR
[2]  
Azzam R. M. A., 1977, ELLIPSOMETRY POLARIZ
[3]   STATISTICS OF THE STOKES PARAMETERS [J].
BARAKAT, R .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (07) :1256-1263
[5]   BILINEAR CONSTRAINTS BETWEEN ELEMENTS OF THE 4BY4 MUELLER-JONES TRANSFER-MATRIX OF POLARIZATION THEORY [J].
BARAKAT, R .
OPTICS COMMUNICATIONS, 1981, 38 (03) :159-161
[6]  
Beran M. J., 1964, THEORY PARTIAL COHER
[7]   SU (2) PHASE JUMPS AND GEOMETRIC PHASES [J].
BHANDARI, R .
PHYSICS LETTERS A, 1991, 157 (4-5) :221-225
[8]  
BORN M, 1980, PRINCIPLES OPTICS, pCH10
[9]  
BROSSEAU C, 1990, CR ACAD SCI II, V310, P371
[10]  
BROSSEAU C, 1991, OPTIK, V88, P109