ON SILNIKOV HOMOCLINIC-SADDLE FOCUS THEOREM

被引:24
作者
DENG, B
机构
[1] Department of Mathematics and Statistics, University of Nebraska, Lincoln
关键词
D O I
10.1006/jdeq.1993.1031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration is given to the chaotic dynamics near an orbit homoclinic to a saddle-focus fixed point of šilnikov type. A new type of symbolic system is used to describe the dynamics on the unstable manifold and its relation to the šilnikov dynamics. Techniques based on the šilnikov method are developed for this unifying treatment. These new ideas and techniques should be applicable for a wide variety of homoclinically and heteroclinically related problems. © 1993 Academic Press, Inc.
引用
收藏
页码:305 / 329
页数:25
相关论文
共 47 条
[1]   OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :171-182
[2]  
BELYAKO GR, 1984, MAT ZAMETKI, V36, P838
[3]  
BELYAKOV GR, 1980, MAT ZAMETKI, V28, P911
[4]  
BERGER MS, 1977, NONLINEARILITY FUNCT
[5]  
BERNOFF AJ, 1986, HETEROCLINIC HOMOCLI
[6]  
Chow S. N., 1990, J DYN DIFFER EQU, V2, P177
[7]   THE BIFURCATION OF HOMOCLINIC AND PERIODIC-ORBITS FROM 2 HETEROCLINIC ORBITS [J].
CHOW, SN ;
DENG, B ;
TERMAN, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (01) :179-204
[8]  
CHOW SN, 1989, SMOOTHNESS INVARIANT
[9]   TRANSITION TO STOCHASTICITY FOR A CLASS OF FORCED OSCILLATORS [J].
COULLET, P ;
TRESSER, C ;
ARNEODO, A .
PHYSICS LETTERS A, 1979, 72 (4-5) :268-270