AN EXAMPLE OF BLOW-UP, FOR THE COMPLEX KDV EQUATION AND EXISTENCE BEYOND THE BLOW-UP

被引:29
作者
BIRNIR, B [1 ]
机构
[1] UNIV ICELAND,INST SCI,REYKJAVIK 107,ICELAND
关键词
D O I
10.1137/0147049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:710 / 725
页数:16
相关论文
共 28 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]  
ABLOWITZ MJ, 1979, PHYS REV LETT, V38, P1103
[3]   RATIONAL AND ELLIPTIC SOLUTIONS OF KORTEWEG DE-VRIES EQUATION AND A RELATED MANY-BODY PROBLEM [J].
AIRAULT, H ;
MCKEAN, HP ;
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (01) :95-148
[4]   CHAOTIC PERTURBATIONS OF KDV .1. RATIONAL SOLUTIONS [J].
BIRNIR, B .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 19 (02) :238-254
[7]  
Du Val P., 1973, LONDON MATH SOC LECT, V9
[8]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[9]   BLOW-UP FOR QUASILINEAR WAVE-EQUATIONS IN 3 SPACE DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (01) :29-51
[10]   DELAYED SINGULARITY FORMATION IN SOLUTIONS OF NONLINEAR-WAVE EQUATIONS IN HIGHER DIMENSIONS [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (06) :649-682