FINITE-SIZE-SCALING STUDY OF THE VORTEX-FREE 3-DIMENSIONAL XY MODEL

被引:8
作者
FISCH, R
机构
[1] Department of Physics, Washington University, St. Louis
来源
PHYSICAL REVIEW B | 1995年 / 52卷 / 17期
关键词
D O I
10.1103/PhysRevB.52.12512
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monte Carlo simulations have been used to study a version of the XY model without vortex loops for J/T = 0 on simple cubic and face-centered-cubic lattices. Finite-size scaling of data from L X L X L lattices with L up to 32 is used to obtain values for the order parameter \M\ and a 1/L finite-size correction on each lattice. The order-parameter susceptibility is found to be diverging as L(0.8). We then study the crossover from three-dimensional to one-dimensional behavior on L X W X W simple cubic lattices, with W = 4 and 8, and L up to 1024.
引用
收藏
页码:12512 / 12515
页数:4
相关论文
共 21 条
[1]   VORTEX LINES AND LAMBDA-TRANSITION [J].
BYCKLING, E .
ANNALS OF PHYSICS, 1965, 32 (03) :367-&
[2]   SCALE-INDEPENDENT FLUCTUATIONS OF SPIN STIFFNESS IN THE HEISENBERG-MODEL AND ITS RELATIONSHIP TO UNIVERSAL CONDUCTANCE FLUCTUATIONS [J].
CHAKRAVARTY, S .
PHYSICAL REVIEW LETTERS, 1991, 66 (04) :481-483
[3]  
FEYMAN RP, 1955, PROGR LOW TEMPERATUR, V1, P52
[4]   HELICITY MODULUS, SUPERFLUIDITY, AND SCALING IN ISOTROPIC SYSTEMS [J].
FISHER, ME ;
BARBER, MN ;
JASNOW, D .
PHYSICAL REVIEW A, 1973, 8 (02) :1111-1124
[5]  
Halperin B., 1981, PHYSICS DEFECTS, P813
[6]   HYDRODYNAMIC THEORY OF SPIN WAVES [J].
HALPERIN, BI ;
HOHENBER.PC .
PHYSICAL REVIEW, 1969, 188 (02) :898-&
[7]   RENORMALIZATION, VORTICES, AND SYMMETRY-BREAKING PERTURBATIONS IN 2-DIMENSIONAL PLANAR MODEL [J].
JOSE, JV ;
KADANOFF, LP ;
KIRKPATRICK, S ;
NELSON, DR .
PHYSICAL REVIEW B, 1977, 16 (03) :1217-1241
[8]   NATURE OF PERCOLATION CHANNELS [J].
KIRKPATRICK, S .
SOLID STATE COMMUNICATIONS, 1973, 12 (12) :1279-1283
[9]   PROPERTIES OF A GENERALIZED 3D O(2) MODEL WITH SUPPRESSION ENHANCEMENT OF VORTEX STRINGS [J].
KOHRING, G ;
SHROCK, RE .
NUCLEAR PHYSICS B, 1987, 288 (02) :397-418
[10]   ROLE OF VORTEX STRINGS IN THE 3-DIMENSIONAL O(2) MODEL [J].
KOHRING, G ;
SHROCK, RE ;
WILLS, P .
PHYSICAL REVIEW LETTERS, 1986, 57 (11) :1358-1361