TRIDIAGONAL MATRICES - INVERTIBILITY AND CONDITIONING

被引:16
作者
BRUGNANO, L
TRIGIANTE, D
机构
关键词
D O I
10.1016/0024-3795(92)90273-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tridiagonal matrices arise in a large variety of applications. Most of the time they are diagonally dominant, and this is indeed the case most extensively studied. In this paper we study, in a unified approach, the invertibility and the conditioning of such matrices. The results presented provide practical criteria for a tridiagonal and irreducible matrix to be both invertible and "well conditioned." An application to a singular perturbation boundary value problem is then presented.
引用
收藏
页码:131 / 150
页数:20
相关论文
共 15 条
[1]  
BRUGNANO L, 1991, 1 U BAR DIP MAT RAPP
[2]  
BUCKBERGER B, 1973, USSR COMP MATH MATH, V13, P10
[3]  
CAPOVANI M, 1970, CALCOLO, V7, P295
[4]  
DILENA G, 1990, JAPAN J APPL MATH, V7, P145
[5]  
FISHER CF, 1969, SIAM J NUMER ANAL, V6, P127
[6]   COMPUTATION ASPECTS OF 3-TERM RECURRENCE RELATIONS [J].
GAUTSCHI, W .
SIAM REVIEW, 1967, 9 (01) :24-&
[7]  
GODOUNOV S, 1977, SCHEMAS DIFFERENCES, pCH2
[8]   ACCELERATED ITERATIVE METHODS FOR SOLUTION OF TRIDIAGONAL SYSTEMS ON PARALLEL COMPUTERS [J].
HELLER, DE ;
STEVENSON, DK ;
TRAUB, JF .
JOURNAL OF THE ACM, 1976, 23 (04) :636-654
[9]   EFFICIENT ALGORITHMS FOR COMPUTING THE CONDITION NUMBER OF A TRIDIAGONAL MATRIX [J].
HIGHAM, NJ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (01) :150-165
[10]  
Laks V, 1988, THEORY DIFFERENCE EQ