NUMERICAL-SOLUTION OF PROBLEMS IN INCOMPRESSIBLE FINITE ELASTICITY BY AUGMENTED LAGRANGIAN-METHODS .1. TWO-DIMENSIONAL AND AXISYMMETRIC PROBLEMS

被引:22
作者
GLOWINSKI, R
LETALLEC, P
机构
[1] UNIV TEXAS,DEPT AEROSP ENGN & ENGN MECH,AUSTIN,TX 78712
[2] INRIA,F-78150 LE CHESNAY,FRANCE
关键词
D O I
10.1137/0142031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:400 / 429
页数:30
相关论文
共 19 条
[1]  
Adams R.A., 2003, PURE APPL MATH SOB O, V2nd ed.
[2]  
ANTMAN SS, 1976, ARCH RATION MECH AN, V61, P307
[3]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[4]  
BECKER E, 1966, THESIS U CALIFORNIA
[5]   LARGE DISPLACEMENT CALCULATIONS OF FLEXIBLE PIPELINES BY FINITE-ELEMENT AND NON-LINEAR PROGRAMMING METHODS [J].
BOURGAT, JF ;
DUMAY, JM ;
GLOWINSKI, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1980, 1 (01) :34-81
[6]  
BOURGAT JF, 1980, PARTIAL DIFFERENTIAL, P445
[7]  
Brent R., 1973, ALGORITHMS MINIMIZAT
[8]  
Chadwick P., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P258
[9]  
Ciarlet PG., 1978, FINITE ELEMENT METHO
[10]  
FORTIN M, UNPUB RESOLUTION NUM