P, Q-STIRLING NUMBERS AND SET PARTITION STATISTICS

被引:118
作者
WACHS, M [1 ]
WHITE, D [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
基金
美国国家科学基金会;
关键词
D O I
10.1016/0097-3165(91)90020-H
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give bijections on restricted growth functions and rook placements on stairstep Ferrers boards to show that the q-Stirling numbers of the second kind, described by Gould, arise as generating functions for various statistics on set partitions. We also describe a two-variable, p, q-Stirling number which is the generating function for the joint distribution of pairs of statistics. © 1991.
引用
收藏
页码:27 / 46
页数:20
相关论文
共 14 条
[1]  
Andrews G. E., 1976, ENCY MATH ITS APPL, V2
[2]   Q-COUNTING ROOK CONFIGURATIONS AND A FORMULA OF FROBENIUS [J].
GARSIA, AM ;
REMMEL, JB .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 41 (02) :246-275
[3]   A Q-ANALOG OF THE EXPONENTIAL FORMULA [J].
GESSEL, IM .
DISCRETE MATHEMATICS, 1982, 40 (01) :69-80
[4]   ROOK THEORY .1. ROOK EQUIVALENCE OF FERRERS BOARDS [J].
GOLDMAN, JR ;
JOICHI, JT ;
WHITE, DE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :485-492
[5]   Q-STIRLING NUMBERS OF FIRST AND SECOND KINDS [J].
GOULD, HW .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (02) :281-&
[6]  
ISMAIL MEH, IN PRESS COMBINATORI
[8]  
REMMEL JB, COMMUNICATION
[9]  
Riordan J., 1958, INTRO COMBINATORIAL
[10]  
SAGAN B, COMMUNICATION