FREDHOLM THEORY FOR QUASI-CLASSICAL SCATTERING

被引:28
作者
GEORGEOT, B
PRANGE, RE
机构
[1] Department of Physics, University of Maryland, College Park
关键词
D O I
10.1103/PhysRevLett.74.4110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quasiclassical approximation to the scattering amplitude is expressed, for the first time, as a ratio of absolutely convergent series. We exploit the Fredholm theory of integral equations and the result is shown to be a generalization and simplification of techniques used in resumming the Gutzwiller trace formula. A numerical example is given which displays rapid convergence of the Fredholm series for the scattering amplitude. The method is not restricted to hard chaos or to cases where the curvature expansion is good, but it naturally exploits these simplifications. © 1995 The American Physical Society.
引用
收藏
页码:4110 / 4113
页数:4
相关论文
共 30 条
[1]   DISTRIBUTION OF EIGENFREQUENCIES FOR WAVE EQUATION IN A FINITE DOMAIN .1. 3-DIMENSIONAL PROBLEM WITH SMOOTH BOUNDARY SURFACE [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1970, 60 (02) :401-&
[2]  
BARANGER H, 1993, CHAOS, V4, P665
[3]   A NEW ASYMPTOTIC REPRESENTATION FOR ZETA(1/2 + IT) AND QUANTUM SPECTRAL DETERMINANTS [J].
BERRY, MV ;
KEATING, JP .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 437 (1899) :151-173
[4]   CLASSICAL IRREGULAR SCATTERING AND ITS QUANTUM-MECHANICAL IMPLICATIONS [J].
BLUMEL, R ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :477-480
[5]   SEMICLASSICAL COMPUTATIONS OF ENERGY-LEVELS [J].
BOGOMOLNY, E ;
SCHMIT, C .
NONLINEARITY, 1993, 6 (04) :523-547
[6]   SEMICLASSICAL QUANTIZATION OF MULTIDIMENSIONAL SYSTEMS [J].
BOGOMOLNY, EB .
NONLINEARITY, 1992, 5 (04) :805-866
[7]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[8]   A Fredholm determinant for semiclassical quantization [J].
Cvitanovic, Predrag ;
Rosenqvist, Per E. ;
Vattay, Gabor ;
Rugh, Hans Henrik .
CHAOS, 1993, 3 (04) :619-636
[9]   CHAOTIC SPECTROSCOPY [J].
DORON, E ;
SMILANSKY, U .
PHYSICAL REVIEW LETTERS, 1992, 68 (09) :1255-1258
[10]   Correlations in quantum time delay [J].
Eckhardt, Bruno .
CHAOS, 1993, 3 (04) :613-617