THE WULFF THEOREM REVISITED

被引:51
作者
FONSECA, I
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1991年 / 432卷 / 1884期
关键词
D O I
10.1098/rspa.1991.0009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The parametrized indicator measures and the Brunn-Minkowski inequality are used to prove that the Wulff set W-GAMMA is a minimizer for the surface energy where the density is the support function of W-GAMMA. The support of the indicator measures associated to minimizing sequences is characterized. It is shown that if W-GAMMA is polyhedral then minimizing sequences cannot oscillate.
引用
收藏
页码:125 / 145
页数:21
相关论文
共 23 条
[1]   FIRST VARIATION OF A VARIFOLD [J].
ALLARD, WK .
ANNALS OF MATHEMATICS, 1972, 95 (03) :417-&
[3]  
DACOROGNA B, 1991, IN PRESS WULFF THEOR
[4]   On Wulff's geometric theorem for the balanced form of crystals [J].
Dinghas, A .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1944, 105 (04) :304-314
[5]  
EVANS LC, 1987, LECTURES NOTES MEASU
[6]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[7]   INTERFACIAL ENERGY AND THE MAXWELL RULE [J].
FONSECA, I .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1989, 106 (01) :63-95
[8]  
FONSECA I, 1991, IN PRESS UNIQUENESS
[9]  
FONSECA I, 1991, IN PRESS LOWER SEMIC
[10]  
GIUSTI E, 1984, MINIMAL SURFACES FUN