EFFECTIVE BEZOUT IDENTITIES IN Q[Z1,...,ZN]

被引:47
作者
BERENSTEIN, CA [1 ]
YGER, A [1 ]
机构
[1] UNIV BORDEAUX 1,F-33405 TALENCE,FRANCE
关键词
D O I
10.1007/BF02398884
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:69 / 120
页数:52
相关论文
共 38 条
[1]  
AIZENBERG LA, 1983, INTEGRAL REPRESENTAT
[2]   A SHORTCUT TO WEIGHTED REPRESENTATION FORMULAS FOR HOLOMORPHIC-FUNCTIONS [J].
ANDERSSON, M ;
PASSARE, M .
ARKIV FOR MATEMATIK, 1988, 26 (01) :1-12
[3]   ON EXPLICIT SOLUTIONS TO THE BEZOUT EQUATION [J].
BERENSTEIN, CA ;
STRUPPA, DC .
SYSTEMS & CONTROL LETTERS, 1984, 4 (01) :33-39
[4]   INTERPOLATION PROBLEMS IN CN WITH APPLICATIONS TO HARMONIC-ANALYSIS [J].
BERENSTEIN, CA ;
TAYLOR, BA .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 38 :188-254
[5]  
BERENSTEIN CA, 1990, MICH MATH J, V37, P25
[6]   THE PROBLEM OF DECONVOLUTION [J].
BERENSTEIN, CA ;
YGER, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 54 (02) :113-160
[7]   ANALYTIC BEZOUT IDENTITIES [J].
BERENSTEIN, CA ;
YGER, A .
ADVANCES IN APPLIED MATHEMATICS, 1989, 10 (01) :51-74
[8]  
BERENSTEIN CA, 1989, CR ACAD SCI I-MATH, V308, P163
[9]  
BERENSTEIN CA, 1989, FORUM MATH, V1, P15
[10]   BOUNDS FOR THE DEGREES IN THE NULLSTELLENSATZ [J].
BROWNAWELL, WD .
ANNALS OF MATHEMATICS, 1987, 126 (03) :577-591