POLYMER STRETCH IN DILUTE FIXED-BEDS OF FIBERS OR SPHERES

被引:24
作者
SHAQFEH, ESG [1 ]
KOCH, DL [1 ]
机构
[1] CORNELL UNIV, SCH CHEM ENGN, ITHACA, NY 14853 USA
关键词
D O I
10.1017/S0022112092002957
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A theory is developed to describe the conformation change of polymers in flow through dilute, random fixed beds of spheres or fibres. The method of averaged equations is used to analyse the effect of the stochastic velocity fluctuations on polymer conformation via an approach similar to that used in our previous analysis of particle orientation in flow through these beds (Shaqfeh & Koch 1988a, b). The polymers are treated as passive tracers, i.e. the polymeric stress in the fluid is neglected in calculating the stochastic flow field. Simple dumbbell models (either linear or FENE) are used to model the polymer conformation change. In all cases we find that the long-range interactions provide the largest contribution (in the limit of vanishingly small bed volume fraction) to an evolution equation for the probability density of conformation. These interactions create a conformation-dependent diffusivity in such an equation. Solutions for the second moment of the distribution demonstrate that there is a critical pore-size Deborah number beyond which the radius of gyration of a linear dumbbell will grow indefinitely and that of the FENE dumbbell will grow to a large fraction of its maximum extensibility. This behaviour is shown to be related to the development of 'algebraic tails' in the distribution function. The physical reasons for this critical condition are examined and its dependence on bed structure is analysed. These results are shown to be equivalent to those which we derive by the consideration of a polymer in a class of anisotropic Gaussian flow fields. Thus, our results are explicitly related to recent work regarding polymer stretch in model turbulent flows. Finally, the effect of close interactions and their modification of our previous results is discussed.
引用
收藏
页码:17 / 54
页数:38
相关论文
共 42 条
[1]  
BIRD RB, 1978, DYNAMICS POLYM LIQUI, V2
[2]   CREEPING FLOW OF DILUTE POLYMER-SOLUTIONS PAST CYLINDERS AND SPHERES [J].
CHILCOTT, MD ;
RALLISON, JM .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1988, 29 (1-3) :381-432
[3]   CROSS-FLOW OF ELASTIC LIQUIDS THROUGH ARRAYS OF CYLINDERS [J].
CHMIELEWSKI, C ;
PETTY, CA ;
JAYARAMAN, K .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 35 (2-3) :309-325
[4]   FLOW THROUGH TUBES WITH SINUSOIDAL AXIAL VARIATIONS IN DIAMETER [J].
DEIBER, JA ;
SCHOWALTER, WR .
AICHE JOURNAL, 1979, 25 (04) :638-645
[5]   FLOWS OF DILUTE HYDROLYZED POLYACRYLAMIDE SOLUTIONS IN POROUS-MEDIA UNDER VARIOUS SOLVENT CONDITIONS [J].
DURST, F ;
KACZMAR, BU .
JOURNAL OF APPLIED POLYMER SCIENCE, 1981, 26 (09) :3125-3149
[6]   OBSERVATIONS OF AXISYMMETRICAL TRACER PARTICLE ORIENTATION DURING FLOW THROUGH A DILUTE FIXED-BED OF FIBERS [J].
FRATTINI, PL ;
SHAQFEH, ESG ;
LEVY, JL ;
KOCH, DL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (11) :2516-2528
[7]   HIGH-DEBORAH-NUMBER FLOWS OF DILUTE POLYMER-SOLUTIONS [J].
HARLEN, OG ;
RALLISON, JM ;
CHILCOTT, MD .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 34 (03) :319-349
[8]   HIGH-DEBORAH-NUMBER FLOW OF A DILUTE POLYMER-SOLUTION PAST A SPHERE FALLING ALONG THE AXIS OF A CYLINDRICAL TUBE [J].
HARLEN, OG .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 1990, 37 (2-3) :157-173
[9]   AVERAGED-EQUATION APPROACH TO PARTICLE INTERACTIONS IN A FLUID SUSPENSION [J].
HINCH, EJ .
JOURNAL OF FLUID MECHANICS, 1977, 83 (DEC) :695-720
[10]   DRAG DUE TO MOTION OF A NEWTONIAN FLUID THROUGH A SPARSE RANDOM ARRAY OF SMALL FIXED RIGID OBJECTS [J].
HOWELLS, ID .
JOURNAL OF FLUID MECHANICS, 1974, 64 (JUL8) :449-475