MELNIKOV METHOD APPLIED TO THE DOUBLE PENDULUM

被引:19
作者
DULLIN, HR
机构
[1] Institut für Theoretische Physik, Universität Bremen, Bremen, D-28344
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1994年 / 93卷 / 04期
关键词
03.20; 05.45;
D O I
10.1007/BF01314257
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Melnikov's method is applied to the planar double pendulum proving it to be a chaotic system. The parameter space of the double pendulum is discussed, and the integrable cases are identified. In the neighborhood of the integrable case of two uncoupled pendulums Melnikov's integral is evaluated using residue calculus. In the two limiting cases of one pendulum becoming a rotator or an oscillator, the parameter dependence of chaos, i.e. the width of the separatrix layer is analytically discussed. The results are compared with numerically computed Poincare surfaces of section, and good agreement is found.
引用
收藏
页码:521 / 528
页数:8
相关论文
共 14 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]  
ASBRAMOWITZ M, 1972, HDB MATH FUNCTIONS
[3]  
BRYD PF, 1971, HDB ELLIPTIC INTEGRA
[4]  
Gonzalez M., 1992, CLASSICAL COMPLEX AN
[5]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[6]   HORSESHOES IN PERTURBATIONS OF HAMILTONIAN-SYSTEMS WITH 2 DEGREES OF FREEDOM [J].
HOLMES, PJ ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 82 (04) :523-544
[7]   CHAOTIC SCATTERING IN A NEAR-INTEGRABLE SYSTEM [J].
KOCH, BP ;
BRUHN, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (14) :3945-3954
[8]  
LANDAU LD, 1964, THEORETISCHE PHYSIK, V1
[9]  
Lichtenberg A. J., 1983, REGULAR STOCHASTIC M
[10]  
Poincare Henri., 1893, METHODES NOUVELLES M