WHIRLING MODES AND PARAMETRIC-INSTABILITIES IN THE DISCRETE SINE-GORDON EQUATION - EXPERIMENTAL TESTS IN JOSEPHSON RINGS

被引:59
作者
WATANABE, S [1 ]
STROGATZ, SH [1 ]
VANDERZANT, HSJ [1 ]
ORLANDO, TP [1 ]
机构
[1] MIT,DEPT ELECT ENGN & COMP SCI,CAMBRIDGE,MA 02139
关键词
D O I
10.1103/PhysRevLett.74.379
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze the damped driven discrete sine-Gordon equation. For underdamped, highly discrete systems, we show that whirling periodic solutions undergo parametric instabilities at certain drive strengths. The theory predicts novel resonant steps in the current-voltage characteristics of discrete Josephson rings, occurring in the return path of the subgap region. We have observed these steps experimentally in a ring of 8 underdamped junctions. An unusual prediction, verified experimentally, is that such steps occur even if there are no vortices in the ring. Numerical simulations indicate that complex spatiotemporal behavior occurs past the onset of instability. © 1995 The American Physical Society.
引用
收藏
页码:379 / 382
页数:4
相关论文
共 22 条
[1]   THE DYNAMICS OF COUPLED CURRENT-BIASED JOSEPHSON JUNCTIONS - PART II [J].
Aronson, D. G. ;
Doedel, E. J. ;
Othmer, H. G. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :51-66
[2]   THE DISCRETE FRENKEL-KONTOROVA MODEL AND ITS EXTENSIONS .1. EXACT RESULTS FOR THE GROUND-STATES [J].
AUBRY, S ;
LEDAERON, PY .
PHYSICA D-NONLINEAR PHENOMENA, 1983, 8 (03) :381-422
[3]   THE DYNAMICS OF COUPLED CURRENT-BIASED JOSEPHSON-JUNCTIONS .1. [J].
DOEDEL, EJ ;
ARONSON, DG ;
OTHMER, HG .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1988, 35 (07) :810-817
[4]   PARAMETRIC RESONANCE IN LOW-FREQUENCY MAGNETIC STIRRING [J].
GALPIN, JM ;
FAUTRELLE, Y ;
SNEYD, AD .
JOURNAL OF FLUID MECHANICS, 1992, 239 :409-427
[5]  
Grimshaw R., 1990, NONLINEAR ORDINARY D
[6]   PHASE LOCKING OF JOSEPHSON-JUNCTION SERIES ARRAYS [J].
HADLEY, P ;
BEASLEY, MR ;
WIESENFELD, K .
PHYSICAL REVIEW B, 1988, 38 (13) :8712-8719
[7]   THE GEOMETRY AND COMPUTATION OF THE DYNAMICS OF COUPLED PENDULA [J].
Henderson, M. E. ;
Levi, M. ;
Odeh, F. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :27-50
[8]   QUALITATIVE THEORY OF NON-LINEAR BEHAVIOR OF COUPLED JOSEPHSON JUNCTIONS [J].
IMRY, Y ;
SCHULMAN, LS .
JOURNAL OF APPLIED PHYSICS, 1978, 49 (02) :749-758
[9]  
Jordan D. W., 1987, NONLINEAR ORDINARY D
[10]   CATERPILLAR SOLUTIONS IN COUPLED PENDULA [J].
LEVI, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1988, 8 :153-174