CONDITIONAL VELOCITY PDF IN 3-D TURBULENCE

被引:58
作者
GAGNE, Y [1 ]
MARCHAND, M [1 ]
CASTAING, B [1 ]
机构
[1] CTR RECH TRES BASSES TEMP,CNRS,F-38042 GRENOBLE,FRANCE
来源
JOURNAL DE PHYSIQUE II | 1994年 / 4卷 / 01期
关键词
D O I
10.1051/jp2:1994104
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that the probability density functions of velocity increments at small scale in turbulent flows turn to an universal (Gaussian) shape when conditioned to a precisely defined energy transfer rate epsilon(l). The standard deviation sigma(epsilon(l)) of this distribution depends on epsilon(l) following a Kolmogorov like relation sigma3 = C(epsilon(l)).l with a Reynolds number dependent coefficient C.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 14 条
[1]   VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
CASTAING, B ;
GAGNE, Y ;
HOPFINGER, EJ .
PHYSICA D, 1990, 46 (02) :177-200
[2]   CONSEQUENCES OF AN EXTREMUM PRINCIPLE IN TURBULENCE [J].
CASTAING, B .
JOURNAL DE PHYSIQUE, 1989, 50 (02) :147-156
[3]  
CASTAING B, 1993, IN PRESS PHYSICA D
[4]   ON STATISTICAL CORRELATIONS BETWEEN VELOCITY INCREMENTS AND LOCALLY AVERAGED DISSIPATION IN HOMOGENEOUS TURBULENCE [J].
CHEN, SY ;
DOOLEN, GD ;
KRAICHNAN, RH ;
SHE, ZS .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (02) :458-463
[5]   SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE [J].
FRISCH, U ;
SULEM, PL ;
NELKIN, M .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :719-736
[6]  
FRISCH U, 1992, TURBULENCE STOCHASTI, P89
[8]   KOLMOGOROVS INERTIAL-RANGE THEORIES [J].
KRAICHNAN, RH .
JOURNAL OF FLUID MECHANICS, 1974, 62 (JAN23) :305-330
[9]  
Meneveau C., 1987, Nuclear Physics B, Proceedings Supplements, V2, P49, DOI 10.1016/0920-5632(87)90008-9
[10]  
Obukhov A. M., 1962, J FLUID MECH, V13, P77, DOI DOI 10.1017/S0022112062000506