YEAST GENERAL TRANSCRIPTION FACTOR GFI - SEQUENCE REQUIREMENTS FOR BINDING TO DNA AND EVOLUTIONARY CONSERVATION

被引:54
作者
DORSMAN, JC [1 ]
VANHEESWIJK, WC [1 ]
GRIVELL, LA [1 ]
机构
[1] UNIV AMSTERDAM,DEPT MOLEC CELL BIOL,MOLEC BIOL SECT,KRUISLAAN 318,1098 SM AMSTERDAM,NETHERLANDS
关键词
D O I
10.1093/nar/18.9.2769
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
GFI is an abundant DNA binding protein in the yeast S.cerevisiae. The protein binds to specific sequences in both ARS elements and the upstream regions of a large number of genes and is likely to play an important role in yeast cell growth. To get insight into the relative strength of the various GFI-DNA binding sites within the yeast genome, we have determined dissociation rates for several GFI-DNA complexes and found them to vary over a 70-fold range. Strong binding sites for GFI are present in the upstream activating sequences of the gene encoding the 40 kDa subunit II of the QH2:cytochrome c reductase, the gene encoding ribosomal protein S33 and in the intron of the actin gene. The binding site in the ARS1-TRP1 region is of intermediate strength. All strong binding sites conform to the sequence 5′ RTCRYYYNNNACG-3′. Modification interference experiments and studies with mutant binding sites indicate that critical bases for GFI recognition are within the two elements of the consensus DNA recognition sequence. Proteins with the DNA binding specificities of GFI and GFII can also be detected in the yeast K. lactis, suggesting evolutionary conservation of at least the respective DNA-binding domains in both yeasts. © 1990 Oxford University Press.
引用
收藏
页码:2769 / 2776
页数:8
相关论文
共 48 条
[1]   IDENTIFICATION OF PROTEINS INVOLVED IN THE REGULATION OF YEAST ISO-1-CYTOCHROME-C EXPRESSION BY OXYGEN [J].
ARCANGIOLI, B ;
LESCURE, B .
EMBO JOURNAL, 1985, 4 (10) :2627-2633
[2]  
BACKMAN K, 1980, GENE, V11, P167
[3]  
BAKER RE, 1989, J BIOL CHEM, V264, P10843
[4]  
BECKMANN JD, 1987, J BIOL CHEM, V262, P8901
[5]   ISOLATION OF A SACCHAROMYCES-CEREVISIAE CENTROMERE DNA-BINDING PROTEIN, ITS HUMAN HOMOLOG, AND ITS POSSIBLE ROLE AS A TRANSCRIPTION FACTOR [J].
BRAM, RJ ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :403-409
[7]   2 DNA-BINDING FACTORS RECOGNIZE SPECIFIC SEQUENCES AT SILENCERS, UPSTREAM ACTIVATING SEQUENCES, AUTONOMOUSLY REPLICATING SEQUENCES, AND TELOMERES IN SACCHAROMYCES-CEREVISIAE [J].
BUCHMAN, AR ;
KIMMERLY, WJ ;
RINE, J ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (01) :210-225
[8]   CONNECTIONS BETWEEN TRANSCRIPTIONAL ACTIVATORS, SILENCERS, AND TELOMERES AS REVEALED BY FUNCTIONAL-ANALYSIS OF A YEAST DNA-BINDING PROTEIN [J].
BUCHMAN, AR ;
LUE, NF ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (12) :5086-5099
[9]   PURIFICATION OF A YEAST CENTROMERE-BINDING PROTEIN THAT IS ABLE TO DISTINGUISH SINGLE BASE-PAIR MUTATIONS IN ITS RECOGNITION SITE [J].
CAI, MJ ;
DAVIS, RW .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (06) :2544-2550
[10]  
CAPIEAUX E, 1989, J BIOL CHEM, V264, P7437