STABILITY OF TRAVELING WAVES FOR NONCONVEX SCALAR VISCOUS CONSERVATION-LAWS

被引:83
作者
JONES, CKRT
GARDNER, R
KAPITULA, T
机构
[1] UNIV MASSACHUSETTS,AMHERST,MA 01003
[2] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
D O I
10.1002/cpa.3160460404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Travelling waves of a viscous conservation law (so-called viscous profiles) are shown to be stable in polynomialy weighted L(infinity) spaces. There is no assumption of convexity on the nonlinear term and thus earlier results of Il'in and Oleinik, Sattinger, and Kawashima and Matsumura are generalized. The method uses the semigroup of the linearized equation with solutions of the full problem expressed by the variation of constants formula. Estimates are derived for the semigroup through a new technique for estimating the resolvent.
引用
收藏
页码:505 / 526
页数:22
相关论文
共 18 条
[1]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[2]  
Dafermos C. M., 1983, NATO ASI SER C-MATH, V111, P25
[3]  
GOLDSTEIN J. A., 1985, SEMIGROUPS LINEAR OP
[5]  
Il'in A., 1964, AM MATH SOC TRANSL, V2, P19
[6]  
KAPITULA T, 1991, THESIS U MARYLAND
[7]   STABILITY OF WEAK SHOCKS IN LAMBDA OMEGA SYSTEMS [J].
KAPITULA, TM .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) :1193-1219
[8]   ASYMPTOTIC STABILITY OF TRAVELING WAVE SOLUTIONS OF SYSTEMS FOR ONE-DIMENSIONAL GAS MOTION [J].
KAWASHIMA, S ;
MATSUMURA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (01) :97-127
[9]   HYPERBOLIC SYSTEMS OF CONSERVATION LAWS .2. [J].
LAX, PD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1957, 10 (04) :537-566
[10]  
LIU TP, 1985, MEM AM MATH SOC, V328