ON SPACE-TIMES WITH U(1)XU(1) SYMMETRICAL COMPACT CAUCHY SURFACES

被引:99
作者
CHRUSCIEL, PT
机构
[1] Yale University, Physics Department, New Haven
基金
美国国家科学基金会;
关键词
D O I
10.1016/0003-4916(90)90341-K
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General space-times evolving from U(1) × U(1) symmetric Cauchy data prescribed on compact Cauchy surfaces are studied. Existence and properties of solutions of the constraint equations are analyzed. Some "canonical" forms of the metric are derived. When the spatial topology is S3 or S2 × S1 or L(p, q) we show that no singularities form before "the spacelike boundary of Gowdy's square" is reached. © 1990.
引用
收藏
页码:100 / 150
页数:51
相关论文
共 20 条
[1]  
BRUHAT YC, 1987, ANN I H POINCARE-PHY, V46, P97
[2]   GLOBAL ASPECTS OF CAUCHY PROBLEM IN GENERAL RELATIVITY [J].
CHOQUETBRUHAT, Y ;
GEROCH, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (04) :329-+
[3]  
CHOQUETBRUHAT Y, 1980, GENERAL RELATIVITY G
[4]  
CHRISTODOULOU D, UNPUB
[5]  
CHRUSCIEL PT, UNPUB
[6]  
CHRUSCIEL PT, 1989, CMAR3089 AUSTR NAT U
[7]  
Ellis G. F. R., 1973, LARGE SCALE STRUCTUR
[8]  
FISCHER AE, 1970, P RELATIVITY C MIDWE
[9]   METHOD FOR GENERATING SOLUTIONS OF EINSTEINS EQUATIONS [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (06) :918-&
[10]   METHOD FOR GENERATING NEW SOLUTIONS OF EINSTEINS EQUATION .2. [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (03) :394-&