ON A MINIMAX EQUALITY FOR SEMINORMS

被引:5
作者
GRIGORIEFF, RD
PLATO, R
机构
[1] Fachbereich Mathematik Technische Universität Berlin Straße des 17. Juni 135
关键词
D O I
10.1016/0024-3795(93)00258-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For seminorms \\.\\, \\.\\(0), and \\.\\(1), defined on a real or complex vector space X and induced by positive semidefinite Hermitian forms, we present two different proofs of the equality [GRAPHICS] where \\x\\(max) = max {\\x\\(0), \\x\\(1)} and \\x\\(2)(t) - (1 - t) \\x\\(2)(0) + t \\x\\(2)(1), t is an element of [0, 1]. During the course of the first proof, results on the geometry of the joint numerical range of two real-valued quadratic forms are given for spaces equipped with a semidefinite Hermitian form, which may be of independent interest. In the second proof, using a more direct approach, the minimax equality is first proved for finite-dimensional X and norms generated by inner products, and this result is then extended to the general case.
引用
收藏
页码:227 / 243
页数:17
相关论文
共 15 条
[1]  
Aronszajn N., 1961, P INT S LIN SPAC JER, P29
[2]  
BRICKMAN L, 1961, P AM MATH SOC, V12, P61
[3]  
Donoghue WF., 1957, MICH MATH J, V4, P261
[4]  
Greub W., 2012, LINEAR ALGEBRA
[5]  
Halmos P. R, 1978, HILBERT SPACE PROBLE
[6]   The standard value of a bilinear form. [J].
Hausdorff, F .
MATHEMATISCHE ZEITSCHRIFT, 1919, 3 :314-316
[7]  
Lay S. R., 1982, CONVEX SETS THEIR AP
[8]  
LI CK, UNPUB NUMERICAL RANG
[9]  
Louis A. K., 1989, INVERSE SCHLECHT GES
[10]   TOEPLITZ-HAUSDORFF THEOREM AND ELLIPTICITY CONDITIONS [J].
MCINTOSH, A .
AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (06) :475-477