SYMBOLIC DYNAMICS OF SUCCESSIVE QUANTUM-MECHANICAL MEASUREMENTS

被引:29
作者
BECK, C [1 ]
GRAUDENZ, D [1 ]
机构
[1] RHEIN WESTFAL TH AACHEN, INST THEORET PHYS, LEHRSTUHL E, W-5100 AACHEN, GERMANY
来源
PHYSICAL REVIEW A | 1992年 / 46卷 / 10期
关键词
D O I
10.1103/PhysRevA.46.6265
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider successive measurements on quantum-mechnical systems and investigate the way in which sequences of measurements produce information. The eigenvalues of suitable projection operators form symbolic sequences that characterize the quantum system under consideration. For several model systems with finite-dimensional state space, we explicitly calculate the probabilities to observe certain symbol sequences and determine the corresponding Renyi entropies K(beta) with the help of the transfer-matrix method. A nontrivial dependence on beta is observed. We show that the Renyi entropies as well as the symbol-sequence probabilities of the quantum-mechanical measurement process coincide with those of appropriate classes of one-dimensional chaotic maps.
引用
收藏
页码:6265 / 6276
页数:12
相关论文
共 27 条
  • [1] Baxter R. J., 2007, EXACTLY SOLVED MODEL
  • [2] BECK C, IN PRESS THERMODYNAM
  • [3] Bedford T., 1991, ERGODIC THEORY SYMBO
  • [4] Bohr T., 1988, DIRECTIONS CHAOS, V2
  • [5] BOWEN R, 1975, LECTURE NOTES MATH, V470
  • [6] DYNAMIC ENTROPY OF C-STAR ALGEBRAS AND VONNEUMANN-ALGEBRAS
    CONNES, A
    NARNHOFER, H
    THIRRING, W
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 112 (04) : 691 - 719
  • [7] Cornfeld Isaac P., 1982, ERGODIC THEORY, V245
  • [8] SINGULARITIES IN RENYI INFORMATION AS PHASE-TRANSITIONS IN CHAOTIC STATES
    CSORDAS, A
    SZEPFALUSY, P
    [J]. PHYSICAL REVIEW A, 1989, 39 (09) : 4767 - 4777
  • [9] DOWKER HF, UNPUB
  • [10] RANDOMNESS IN THE QUANTUM DESCRIPTION OF NEUTRAL SPIN 1/2 PARTICLES
    GARBACZEWSKI, P
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (06): : 447 - 475