EXTENDED VARIATIONAL FORMULATIONS AND FE MODELS FOR NONLINEAR BEAMS UNDER NONCONSERVATIVE LOADING

被引:12
作者
ALLINEY, S [1 ]
TRALLI, A [1 ]
机构
[1] UNIV BOLOGNA,FAC INGN,IST SCI COSTRUZ,I-40136 BOLOGNA,ITALY
关键词
D O I
10.1016/0045-7825(84)90060-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:177 / 194
页数:18
相关论文
共 39 条
[1]   ON THE USE OF THE QUADRATIC FUNCTIONAL AND ITS DERIVED PRINCIPLES IN STRUCTURAL MECHANICS [J].
ALTMAN, W ;
DEOLIVEIRA, AM .
COMPUTERS & STRUCTURES, 1982, 15 (03) :291-297
[2]   APPLICATION OF THE QUADRATIC FUNCTIONAL TO NON-CONSERVATIVE PROBLEMS OF ELASTIC STABILITY [J].
ALTMAN, W ;
DEOLIVEIRA, AM .
COMPUTERS & STRUCTURES, 1984, 18 (01) :141-145
[3]  
[Anonymous], 1961, Theory of elastic stability
[4]   NON-LINEAR FINITE-ELEMENT ANALYSIS OF ELASTIC-SYSTEMS UNDER NON-CONSERVATIVE LOADING NATURAL FORMULATION .1. QUASISTATIC PROBLEMS [J].
ARGYRIS, JH ;
SYMEONIDIS, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 26 (01) :75-123
[5]   A SEQUEL TO - NON-LINEAR FINITE-ELEMENT ANALYSIS OF ELASTIC-SYSTEMS UNDER NON-CONSERVATIVE LOADING - NATURAL FORMULATION .1. QUASISTATIC PROBLEMS [J].
ARGYRIS, JH ;
SYMEONIDIS, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 26 (03) :377-383
[6]   NON-LINEAR FINITE-ELEMENT ANALYSIS OF ELASTIC-SYSTEMS UNDER NON-CONSERVATIVE LOADING-NATURAL FORMULATION .2. DYNAMIC PROBLEMS [J].
ARGYRIS, JH ;
STRAUB, K ;
SYMEONIDIS, S .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1981, 28 (02) :241-258
[7]  
BALLIO G, 1967, COSTRUZIONI METALLIC, V4, P258
[8]  
Barsoum R. S., 1971, International Journal for Numerical Methods in Engineering, V3, P63, DOI 10.1002/nme.1620030110
[9]  
Bolotin V.V., 1963, Nonconservative Problems of the Theory of Elastic Stability
[10]  
Brodlie K., 1977, The State of the Art in Numerical Analysis