CHARACTERIZATION OF 2 PHOSPHATE-TRANSPORT SYSTEMS IN ACINETOBACTER-JOHNSONII 210A

被引:50
作者
VANVEEN, HW
ABEE, T
KORTSTEE, GJJ
KONINGS, WN
ZEHNDER, AJB
机构
[1] AGRICULTURAL UNIV WAGENINGEN, DEPT MICROBIOL, HESSELINK VAN SUCHTELENWEG 4, 6703 CT WAGENINGEN, NETHERLANDS
[2] UNIV GRONINGEN, DEPT MICROBIOL, 9751 NN HAREN, NETHERLANDS
关键词
D O I
10.1128/JB.175.1.200-206.1993
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The transport of P(i) was characterized in Acinetobacter johnsonii 210A, which is able to accumulate an excessive amount of phosphate as polyphosphate (polyP) under aerobic conditions. P(i) is taken up against a concentration gradient by energy-dependent, carrier-mediated processes. A. johnsonii 210A, grown under P(i) limitation, contains two uptake systems with K(t) values of 0.7 +/- 0.2 muM and 9 +/- 1 muM. P(i) uptake via the high-affinity component is drastically reduced by N,N'-dicyclohexylcarbodiimide, an inhibitor of H+-ATPase, and by osmotic shock. Together with the presence of P(i)-binding activity in concentrated periplasmic protein fractions, these results suggest that the high-affinity transport system belongs to the group of ATP-driven, binding-protein-dependent transport systems. Induction of this transport system upon transfer of cells grown in the presence of excess P(i) to P(i)-free medium results in a 6- to 10-fold stimulation of the P(i) uptake rate. The constitutive low-affinity uptake system for P(i) is inhibited by uncouplers and can mediate counterflow of P(i), indicating its reversible, secondary nature. The presence of an inducible high-affinity uptake system for P(i) and the ability to decrease the free internal P(i) pool by forming polyP enable A. johnsonii 210A to reduce the P(i) concentration in the aerobic environment to micromolar levels. Under anaerobic conditions, polyP is degraded again and P(i) is released via the low-affinity secondary transport system.
引用
收藏
页码:200 / 206
页数:7
相关论文
共 50 条