CHARGE DEPENDENCE OF FE(II)-CATALYZED DNA CLEAVAGE

被引:24
作者
LU, M [1 ]
GUO, Q [1 ]
WINK, DJ [1 ]
KALLENBACH, NR [1 ]
机构
[1] NYU,DEPT CHEM,NEW YORK,NY 10003
关键词
D O I
10.1093/nar/18.11.3333
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effect of charge of the Fe(ll) reagent used to induce DNA strand cleavage reactions in the presence of a source of reducing equivalents is investigated using two oligonucleotide models. The first consists of the two strands dA20 and dT20, and an equimolar complex between them. The second is a short four-arm branched DNA complex composed of four 16-mer strands. In the former case, cleavage of the 1:1 complex by three reagents with different formal charge, Fe(ll).EDTA2-, Fe(ll).EDDA and Fe2+ is comparable in rate to that of the individual dT20 and the dA20 strands. While the three reagents show similar cleavage rates for the duplex and single stranded molecules, they give distinctive cutting patterns in the DNA tetramer, consistent with the presence of a site of excess negative charge at the branch point. Scission induced by Fe(ll).EDTA2- shows lower reactivity at the branch site relative to duplex controls, whereas Fe(ll)2+shows enhanced reactivity. Formally neutral Fe(ll)EDDA shows weak loss of cutting reactivity at the branch. The position of attack by Fe(ll)2+ in the branched tetramer is shifted with respect to those of Fe(ll)EDTA2- or Fe(ll)EDDA; a slower migrating species is also detected in the scission of dA2O.dT2o duplex by Fe(ll) reaction. These results suggest that the Fe(ll)2+ reaction proceeds by a different mechanism from the other agents. The difference in cutting profiles induced by the neutral and egatively charged chelated complexes is consistent with a local electrostatic repulsion of a negatively charged source of radicals, not a positively charged one. © 1990 Oxford University Press.
引用
收藏
页码:3333 / 3337
页数:5
相关论文
共 22 条
[1]  
CARUTHERS MH, 1982, CHEM ENZYMATIC SYNTH, P71
[2]   A HOLLIDAY RECOMBINATION INTERMEDIATE IS TWOFOLD SYMMETRIC [J].
CHURCHILL, MEA ;
TULLIUS, TD ;
KALLENBACH, NR ;
SEEMAN, NC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (13) :4653-4656
[3]   GEL-ELECTROPHORETIC ANALYSIS OF THE GEOMETRY OF A DNA 4-WAY JUNCTION [J].
COOPER, JP ;
HAGERMAN, PJ .
JOURNAL OF MOLECULAR BIOLOGY, 1987, 198 (04) :711-719
[4]   GEOMETRY OF A BRANCHED DNA-STRUCTURE IN SOLUTION [J].
COOPER, JP ;
HAGERMAN, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (19) :7336-7340
[5]   THE STRUCTURE OF THE HOLLIDAY JUNCTION, AND ITS RESOLUTION [J].
DUCKETT, DR ;
MURCHIE, AIH ;
DIEKMANN, S ;
VONKITZING, E ;
KEMPER, B ;
LILLEY, DMJ .
CELL, 1988, 55 (01) :79-89
[6]  
FENTON HJH, 1984, J CHEM SOC, V65, P899
[7]   DNAASE FOOTPRINTING - SIMPLE METHOD FOR DETECTION OF PROTEIN-DNA BINDING SPECIFICITY [J].
GALAS, DJ ;
SCHMITZ, A .
NUCLEIC ACIDS RESEARCH, 1978, 5 (09) :3157-3170
[8]  
GOYNE T, 1987, J AM CHEM SOC, V95, P7850
[9]   SITE-SPECIFIC INTERACTION OF INTERCALATING DRUGS WITH A BRANCHED DNA MOLECULE [J].
GUO, Q ;
SEEMAN, NC ;
KALLENBACH, NR .
BIOCHEMISTRY, 1989, 28 (06) :2355-2359
[10]  
GUO Q, 1990, UNPUB NUCL ACIDS RES