CHAOS-REVEALING MULTIPLICATIVE REPRESENTATION OF QUANTUM EIGENSTATES

被引:138
作者
LEBOEUF, P [1 ]
VOROS, A [1 ]
机构
[1] CEA,INST RECH FONDAMENTALE COMMISSARIAT LAB,SERV PHYS THEOR SACLAY,F-91191 GIF SUR YVETTE,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 10期
关键词
D O I
10.1088/0305-4470/23/10/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantisation of the two-dimensional toric and spherical phase spaces is considered in analytic coherent state representations. Every pure quantum state admits therein a finite multiplicative parametrisation by the zeros of its Husimi function. For eigenstates of quantised systems, this description explicitly reflects the nature of the underlying classical dynamics: in the semiclassical regime, the distribution of the zeros in the phase space becomes one-dimensional for integrable systems, and highly spread out (conceivably uniform) for chaotic systems. This multiplicative representation thereby acquires a special relevance for semiclassical analysis in chaotic systems.
引用
收藏
页码:1765 / 1774
页数:10
相关论文
共 16 条