FINITE-TIME BLOWUP FOR A PARTICULAR PARABOLIC-SYSTEM

被引:18
作者
BEBERNES, J [1 ]
LACEY, A [1 ]
机构
[1] HERIOT WATT UNIV,DEPT MATH,EDINBURGH EH14 4AS,MIDLOTHIAN,SCOTLAND
关键词
D O I
10.1137/0521079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1415 / 1425
页数:11
相关论文
共 11 条
[1]   THE SMALL HEAT-LOSS PROBLEM [J].
BEBERNES, J ;
FULKS, W .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 57 (03) :324-332
[2]   TOTAL BLOW-UP VERSUS SINGLE POINT BLOW-UP [J].
BEBERNES, J ;
BRESSAN, A ;
LACEY, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (01) :30-44
[3]   A MATHEMATICAL-ANALYSIS OF BLOWUP FOR THERMAL-REACTIONS - THE SPATIALLY NON-HOMOGENEOUS CASE [J].
BEBERNES, JW ;
KASSOY, DR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1981, 40 (03) :476-484
[4]   STEADY-STATES OF THE REACTION-DIFFUSION EQUATIONS .1. QUESTIONS OF EXISTENCE AND CONTINUITY OF SOLUTION BRANCHES [J].
BURNELL, JG ;
LACEY, AA ;
WAKE, GC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1983, 24 (APR) :374-391
[5]   BLOW-UP OF POSITIVE SOLUTIONS OF SEMILINEAR HEAT-EQUATIONS [J].
FRIEDMAN, A ;
MCLEOD, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (02) :425-447
[6]  
Friedman A., 1987, J FS U TOKYO A, V34, P65
[7]   GLOBAL EXISTENCE AND BOUNDEDNESS IN REACTION-DIFFUSION SYSTEMS [J].
HOLLIS, SL ;
MARTIN, RH ;
PIERRE, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :744-761
[9]   GLOBAL EXISTENCE AND CONVERGENCE TO A SINGULAR STEADY-STATE FOR A SEMILINEAR HEAT-EQUATION [J].
LACEY, AA ;
TZANETIS, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 105 :289-305
[10]   ON NON-LINEAR REACTION - DIFFUSION-SYSTEMS [J].
PAO, CV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 87 (01) :165-198