MAGNETOHYDRODYNAMIC EKMAN AND STEWARTSON LAYERS IN A ROTATING SPHERICAL-SHELL

被引:68
作者
HOLLERBACH, R [1 ]
机构
[1] UNIV CAMBRIDGE,ISAAC NEWTON INST MATH SCI,CAMBRIDGE CB3 0EH,ENGLAND
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1994年 / 444卷 / 1921期
关键词
D O I
10.1098/rspa.1994.0023
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
I investigate numerically the flow of an electrically conducting fluid in a differentially rotating spherical shell, in the presence of an imposed magnetic field. For a very weak field the flow is seen to consist of an Ekman layer on the inner and outer spherical boundaries, and a Stewartson layer on the cylinder circumscribing the inner sphere and parallel to the axis of rotation, in agreement with the classical non-magnetic analysis. Bs the field strength is increased, the non-magnetic Ekman layers merge smoothly into magnetic Ekman-Hartmann layers, and the Stewartson layer is suppressed. In the fully magnetic regime the interior flow consists essentially of a solid-body rotation, with the precise rate determined by a torque balance between the inner and outer Ekman-Hartmann boundary layers.
引用
收藏
页码:333 / 346
页数:14
相关论文
共 11 条
[1]  
Abramowitz M., 1968, HDB MATH FUNCTIONS
[2]   ON SPIN-UP OF AN ELECTRICALLY CONDUCTING FLUID .1. UNSTEADY HYDROMAGNETIC EKMAN-HARTMANN BOUNDARY-LAYER PROBLEM [J].
BENTON, ER ;
LOPER, DE .
JOURNAL OF FLUID MECHANICS, 1969, 39 :561-&
[3]  
Braginskiy S. I., 1989, Geomagnetism and Aeronomy, V29, P98
[4]   INFLUENCE OF AN AXIAL MAGNETIC FIELD ON STEADY LINEAR EKMAN BOUNDARY LAYER [J].
GILMAN, PA ;
BENTON, ER .
PHYSICS OF FLUIDS, 1968, 11 (11) :2397-&
[5]   A GEODYNAMO MODEL INCORPORATING A FINITELY CONDUCTING INNER CORE [J].
HOLLERBACH, R ;
JONES, CA .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1993, 75 (04) :317-327
[6]   MAGNETOHYDRODYNAMIC FLOW IN A CONTAINER [J].
INGHAM, DB .
PHYSICS OF FLUIDS, 1969, 12 (02) :389-&
[7]   GENERAL SOLUTION FOR LINEARIZED EKMAN-HARTMANN LAYER ON A SPHERICAL BOUNDARY [J].
LOPER, DE .
PHYSICS OF FLUIDS, 1970, 13 (12) :2995-&
[8]   NUMERICAL-SOLUTIONS OF NONLINEAR ALPHA-EFFECT DYNAMO EQUATIONS [J].
PROCTOR, MRE .
JOURNAL OF FLUID MECHANICS, 1977, 80 (MAY23) :769-784
[9]   THE ALMOST-RIGID ROTATION OF VISCOUS FLUID BETWEEN CONCENTRIC SPHERES [J].
PROUDMAN, I .
JOURNAL OF FLUID MECHANICS, 1956, 1 (05) :505-516
[10]   ON ALMOST RIGID ROTATIONS .2. [J].
STEWARTSON, K .
JOURNAL OF FLUID MECHANICS, 1966, 26 :131-+