DYNAMIC ALGORITHMS FOR SHORTEST PATHS IN PLANAR GRAPHS

被引:17
作者
FEUERSTEIN, E
MARCHETTISPACCAMELA, A
机构
[1] UNIV ROMA LA SAPIENZA,DIPARTIMENTO INFORMAT & SISTEMIST,VIA SALARIA 113,I-00198 ROME,ITALY
[2] UNIV LAQUILA,DIPARTIMENTO MATEMAT,I-67100 LAQUILA,ITALY
关键词
Algorithms;
D O I
10.1016/0304-3975(93)90328-Q
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose data structures for maintaining shortest paths in planar graphs in which the weight of an edge is modified. Our data structures allow us to compute, after an update, the shortest-path tree rooted at an arbitrary query node in time O(n square-root log log n) and to perform an update in O((log n)3). Our data structure can be applied also to the problem of maintaining the maximum flow problem in an s-t planar network. As far as the all-pairs shortest-path problem is concerned. we are interested in computing the shortest distances between q pairs of nodes. We show how to obtain an o(n2) algorithm for computing the shortest path between q pairs of nodes whenever q=o(n2). We also consider the dynamic version of the problem in which we allow the modification of the weight of an edge.
引用
收藏
页码:359 / 371
页数:13
相关论文
共 18 条
[1]   INCREMENTAL ALGORITHMS FOR MINIMAL LENGTH PATHS [J].
AUSIELLO, G ;
ITALIANO, GF ;
SPACCAMELA, AM ;
NANNI, U .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1991, 12 (04) :615-638
[2]  
CARROLL MD, 1988, 15TH P ANN ACM SIGAC
[3]  
DIBATTISTA G, 1990, LECT NOTES COMPUT SC, V443, P598
[4]  
DIBATTISTA G, 1989, 30TH P ANN S F COMP
[5]  
Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[6]  
DJIDJEV HN, 1991, LECTURE NOTES COMPUT
[7]  
EPPSTEIN D, 1990, 1 P ACM SIAM S DISCR
[8]  
FREDERICKSON GN, 1987, SIAM J COMPUT, V16, P1004, DOI 10.1137/0216064
[9]  
FREDERICKSON GN, 1987, 19TH P ACM STOC NEW, P19
[10]  
Fredman M. L., 1984, 25th Annual Symposium on Foundations of Computer Science (Cat. No. 84CH2085-9), P338, DOI 10.1109/SFCS.1984.715934