INFINITE-GRAPHS WITH NONCONSTANT DIRICHLET FINITE HARMONIC-FUNCTIONS

被引:16
作者
CARTWRIGHT, DI [1 ]
WOESS, W [1 ]
机构
[1] UNIV MILAN,DIPARTIMENTO MATEMAT,I-20133 MILAN,ITALY
关键词
HARMONIC FUNCTIONS ON GRAPHS; UNIQUENESS OF CURRENTS; DIRICHLET SUM;
D O I
10.1137/0405029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of infinite graphs that can be embedded uniformly in the hyperbolic plane and carry nonconstant harmonic functions with finite Dirichlet sum is exhibited. In fact, a general method of constructing such harmonic functions "with prescribed boundary values" is provided.
引用
收藏
页码:380 / 385
页数:6
相关论文
共 16 条
[1]  
Ahlfors L.V., 1960, PRINCETON MATH SER, V26
[2]  
ANCONA A, 1988, LECT NOTES MATH, V1344, P1
[3]  
[Anonymous], 1984, GEOMETRIAE DEDICATA, DOI 10.1007/BF00146825
[4]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR, V91
[5]  
Bien F., 1989, NOTICES AM MATH SOC, V36, P5
[7]   INFINITE NETWORKS .1. RESISTIVE NETWORKS [J].
FLANDERS, H .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (03) :326-&
[8]  
GERL P, 1988, J THEORET PROBAB, V1, P171, DOI DOI 10.1007/BF01046933
[9]   MARTIN BOUNDARIES OF RANDOM-WALKS ON FUCHSIAN-GROUPS [J].
SERIES, C .
ISRAEL JOURNAL OF MATHEMATICS, 1983, 44 (03) :221-242
[10]   UNIQUENESS OF CURRENTS IN INFINITE RESISTIVE-NETWORKS [J].
SOARDI, PM ;
WOESS, W .
DISCRETE APPLIED MATHEMATICS, 1991, 31 (01) :37-49