RANDOM GENERATION OF STOCHASTIC AREA INTEGRALS

被引:56
作者
GAINES, JG
LYONS, TJ
机构
[1] Univ of Edinburgh, Edinburgh
关键词
STOCHASTIC DIFFERENTIAL EQUATIONS; RANDOM NUMBER GENERATION; NUMERICAL APPROXIMATIONS;
D O I
10.1137/S0036139992235706
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors describe a method of random generation of the integrals A1,2(t,t+h) = integral-t+h/t integral-s/t dw1(r)dw2(s) - integral-t+h/t integral-s/t dw2(r)dw1(s), together with the increments w1(t+h) - w1(t) and w2(t+h) - w2(t) of a two-dimensional Brownian path (w1(t), w2(t)). The method chosen is based on Marsaglia's ''rectangle-wedge-tail'' method, generalised to higher dimensions. The motivation is the need for a numerical scheme for simulation of strong solutions of general multidimensional stochastic differential equations with an order of convergence O(h), where h is the stepsize. Previously, no method has obtained an order of convergence better than O(square-root h) in the general case.
引用
收藏
页码:1132 / 1146
页数:15
相关论文
共 13 条
[1]  
CLARK JMC, 1980, LECTURE NOTES CONTRO, V25
[2]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[4]   A METHOD FOR THE CONSTRUCTION OF MINIMUM-REDUNDANCY CODES [J].
HUFFMAN, DA .
PROCEEDINGS OF THE INSTITUTE OF RADIO ENGINEERS, 1952, 40 (09) :1098-1101
[5]  
Kloeden P.E., 1992, NUMERICAL SOLUTION S, V23
[6]  
Knuth D. E., 2011, ART COMPUTER PROGRAM, V4
[7]  
LEVY P, 1951, 2ND BERKELEY S MATH
[8]  
Marsaglia G., 1976, Information Processing Letters, V5, P27, DOI 10.1016/0020-0190(76)90074-0
[9]   A FAST PROCEDURE FOR GENERATING NORMAL RANDOM VARIABLES [J].
MARSAGLIA, G ;
MACLAREN, MD ;
BRAY, TA .
COMMUNICATIONS OF THE ACM, 1964, 7 (01) :4-10
[10]  
Marsaglia G., 1977, Computers & Mathematics with Applications, V3, P321, DOI 10.1016/0898-1221(77)90089-X