ON THE AVERAGE LENGTH OF DELAUNAY TRIANGULATIONS

被引:16
作者
CHANG, RC
LEE, RCT
机构
[1] NATL CHIAO TUNG UNIV,INST COMP ENGN,HSINCHU 300,TAIWAN
[2] NATL TSING HUA UNIV,DEPT ELECT ENGN,HSINCHU 300,TAIWAN
来源
BIT | 1984年 / 24卷 / 03期
关键词
D O I
10.1007/BF02136025
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:269 / 273
页数:5
相关论文
共 16 条
[1]   MULTIDIMENSIONAL DIVIDE-AND-CONQUER [J].
BENTLEY, JL .
COMMUNICATIONS OF THE ACM, 1980, 23 (04) :214-229
[2]  
CHANG RC, UNPUB AVERAGE CASE P
[3]  
DELAUNAY B, 1943, B ACAD SCI USSR SMN, V7, P793
[4]   STOCHASTIC POINT PROCESSES - LIMIT THEOREMS [J].
GOLDMAN, JR .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (03) :771-&
[5]   A NOTE ON DELAUNAY AND OPTIMAL TRIANGULATIONS [J].
KIRKPATRICK, DG .
INFORMATION PROCESSING LETTERS, 1980, 10 (03) :127-128
[6]  
LAWSON CL, 1977, MATH SOFTWARE, V3
[7]   2 ALGORITHMS FOR CONSTRUCTING A DELAUNAY TRIANGULATION [J].
LEE, DT ;
SCHACHTER, BJ .
INTERNATIONAL JOURNAL OF COMPUTER & INFORMATION SCIENCES, 1980, 9 (03) :219-242
[8]  
LINGAS A, 1983, THESIS LINKOPING U S
[9]  
LLOYD EL, 1977, 18TH P ANN IEEE C F
[10]   NEITHER THE GREEDY NOR THE DELAUNAY TRIANGULATION OF A PLANAR POINT SET APPROXIMATES THE OPTIMAL TRIANGULATION [J].
MANACHER, GK ;
ZOBRIST, AL .
INFORMATION PROCESSING LETTERS, 1979, 9 (01) :31-34