ASYMPTOTIC STRUCTURE FACTOR AND POWER-LAW TAILS FOR PHASE ORDERING IN SYSTEMS WITH CONTINUOUS SYMMETRY

被引:146
作者
BRAY, AJ [1 ]
PURI, S [1 ]
机构
[1] UNIV MAINZ,INST PHYS,W-6500 MAINZ,GERMANY
关键词
D O I
10.1103/PhysRevLett.67.2670
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the asymptotic structure factor S(k)(t) [= L(t)(d)g(kL(t)), where L(t) is a time-dependent characteristic length scale and d is the dimensionality] for a system with a nonconserved n-component vector order parameter quenched into the ordered phase. The well-known Ohta-Jasnow-Kawasaki-Yalabik-Gunton result is recovered for n = 1. The scaling function g(x) has the large-x behavior g(x) approximately x-(d + n), which includes Porod's law (for n = 1) as a special case.
引用
收藏
页码:2670 / 2673
页数:4
相关论文
共 36 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]   THEORY OF 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K .
REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (07) :783-859
[3]  
BRAY AJ, IN PRESS
[4]   LATE-TIME COARSENING DYNAMICS IN A NEMATIC LIQUID-CRYSTAL [J].
CHUANG, I ;
TUROK, N ;
YURKE, B .
PHYSICAL REVIEW LETTERS, 1991, 66 (19) :2472-2479
[5]  
CHUANG I, IN PRESS
[6]   MULTISCALING IN GROWTH-KINETICS [J].
CONIGLIO, A ;
ZANNETTI, M .
EUROPHYSICS LETTERS, 1989, 10 (06) :575-580
[7]   SCATTERING BY AN INHOMOGENEOUS SOLID .2. THE CORRELATION FUNCTION AND ITS APPLICATION [J].
DEBYE, P ;
ANDERSON, HR ;
BRUMBERGER, H .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (06) :679-683
[8]   THEORY OF PHASE-TRANSITION KINETICS IN SYSTEMS WITH CONTINUOUS SYMMETRY [J].
DEPASQUALE, F ;
TARTAGLIA, P .
PHYSICAL REVIEW B, 1986, 33 (03) :2081-2083
[9]   A DYNAMIC SCALING ASSUMPTION FOR PHASE-SEPARATION [J].
FURUKAWA, H .
ADVANCES IN PHYSICS, 1985, 34 (06) :703-750
[10]  
GRANT M, IN PRESS INT J MOD B